フレーム着底式海底資源掘削機についての考察

ーレアアース泥採掘コストの試算-

正会員木村 元 正会員 宮 崎 良 平

A Study of Frame-Grounding Type Seafloor Mining Excavator by Hajime Kimura, *Member* Ryohei Miyazaki, *Member*

Key Words: Marine Resources Development, Offshore drilling, Rare Earth, Sea-floor hydrothermal deposit

1. 緒 言

我が国の排他的経済水域の深海底には、海底熱水鉱床 やコバルトリッチクラスト、レアアース堆積物など鉄や 銅等のベースメタルやハイテク産業に欠かせないレアメ タルやレアアース鉱物資源の存在が確認されており、こ れらの安定供給のためにも地上での採鉱と競争可能な採 掘技術の確立が急務である.これまで履帯式の車体にカ ッタードラムやジェットノズルを取り付け、海水と一緒 にパイプで海上まで引き上げる方式が開発されてきたが、 移動や採鉱に大きなエネルギーを消費する問題がある. 本研究では、採鉱の際のエネルギー消費が少なく、周囲 に汚染物質をまき散らすことのないフレーム着定式採鉱 装置について、レアアース泥鉱床での運用コストの概算 を従来方法と比較し、実現可能性を検討する.

2. 海底資源の可能性

日本の排他的経済水域内における潜在資源量は,海底 熱水鉱床は世界第1位,コバルトリッチクラストは世界 第2位となっており,その回収推定額は180兆円以上だ と言われている¹⁾.また,これらの海底鉱物資源を5000 t/日採掘したとすると収入は,2~6億円/日である.また, 南鳥島のSite800では,300万t/年採掘したとすると収入 は,700億/年である²⁾.

Fig.1 A concept of the standard sea-floor mining system

採鉱システムは, Fig.1 に示すように大きく3つのサブ システムから構成され,①海底で鉱石を採掘する採掘シ ステム,②採掘された鉱石を海面まで揚げる揚鉱システ

* 九州大学 大学院工学研究院

原稿受付 (学会にて記入します) 秋季講演会において講演 (学会にて記入します) ©日本船舶海洋工学会 ム,③海面に揚がった鉱石を処理し陸上に運ぶための採 鉱母船システムに区分される³⁾.

3.2 従来の採鉱機

従来の採鉱機は,履帯による自走式が一般的となって いる⁴⁾⁵⁾.このタイプの採鉱機が平成24年8月に日本の 海底熱水鉱床にて実証実験を行った³⁾.以下にその実証実 験の問題点・改良すべき点を述べる.

①反力の問題:掘削カッターの反力に対応するために採 鉱機自身を大型化する必要がある.将来的は、ダイヤモ ンド掘削機(約 200 トン)のスケールが必要.

②採鉱機の移動の問題:海底は軟弱な地盤であり、車輪や履帯の沈下のため移動が困難である.移動することが出来たとしても大きな轍(わだち)を作って移動するため、大きなエネルギーコストを要する.

③環境面の問題:掘削や移動の際に泥や砂等を巻き上げ ることなどにより,周辺環境が悪化する.

④カメラ等にセンシングの問題:掘削する際の土砂の舞い上がりにより、カメラでのセンシングは困難.

⑤自動化の問題:オペレータによるリモコン操縦で採鉱 機を稼働させることが前提であり,自動化は困難.

⑥ソナーの問題:現在使われているソナーだけを使って 採鉱機を思いのままに操作することは難しいレベルである.掘削前に掘削範囲をスキャン等することで,掘削前 に地形データを把握して,掘削を行いたい.

⑦ケーブルの損傷の問題:履帯部の巻込み等によってケ ーブルの損傷が発生し、メンテナンス回数も増加する.

Fig.2 A concept of the frame-grounding type mining excavator

本研究では、新たな海底資源採掘方法である「フレー ム着底式海底鉱床掘削機」を検討する⁶⁷⁷.フレームにト ロリ走行用の軌道を設置し、トロリに掘削用カッタード ラムを取り付ける.カッタードラム後方には、掘削と同 時に掘り出した鉱物を吸い込むための吸い込み口が設置 され、フレキシブルパイプを通じて支援母船へ送られる. フレームは海底に対し支柱と脚によって掘削が海底地形

^{**}川崎重工業株式会社

に影響されない高さに支持される. 掘削時,本機を海底 面に着底させ,掘削カッターをトロリで移動させながら 掘削する. 掘削が終了したら,クレーン・フロートまた はスラスタを利用して本機を海底面より持ち上げ,別の 場所へ移動する. 本システムは以下の特徴を有する:

①反力の問題への対応:フレームが大きな重量を有する, カッタードラムを大きくする,水中ポンプをこの構造内 に入れることによって,重さの調整が出来,反力の問題 を解決できる.

②採鉱機の移動の問題への対応:トロリはレール上を移動するため、轍(わだち)等を作って移動せず、その分のエネルギーロスがない.また、履帯式のように移動するわけではないため、移動が出来ないことがない.特に、レアアース堆積物等の超軟弱地盤で有効である.

③環境負荷の低減:側面および天井はシートやカーテン 等にて被覆するため,掘削時における砂等の舞い上がり の拡散を防ぐ効果が高い.

④センシングの容易さ:トロリに超音波距離計を取り付け、スキャナのようにセンシングすることにより、掘削する前に掘削対象の正確な形状を簡単に計測可能.そのため、視界悪化に影響されず、掘削が可能である.

⑤自動化への容易さ:④で述べたように掘削前に地形デ ータを把握でき、オペレータの手を借りず、採掘作業の 完全自動化が容易に可能である.

⑥ケーブルの損傷の回避:掘削カッター部はレールを走 行するため,履帯でケーブルを踏むような損傷が無い.

5. 既存の履帯式方法と新システムの比較

採鉱条件は、レアアース揚泥量 300 万 t /年以上(揚泥 量は 12[m3/分]),稼働日数は 3 パターン(300 日,268 日,180 日),採鉱場所は 2 パターン(PC5 【縦 1500[m] ×横 1500[m]×鉱床厚さ 2[m]】,Site800 【縦 700[m]×横 700[m]×鉱床厚さ 10[m]】)とする.新システムの電力は、

(1)縦移動消費電力(カッターの重量を構造的に支持可能な鋼材で構成される梁とラーメン構造として求めた. 縦移動はフロートに空気注入して浮上するとして計算)

(2) トロリの移動消費電力(クラブトロリ式天井クレーンを採用し、カッター重量に応じてモータの規格を変更)
(3) 縦移動消費電力(スラスタを複数個装備すると仮定.スラスタ出力は、フレームの重量に応じて変化させ、例えば 300[t]の漁船のサイドスラスタの出力は 331[KW]であることを参考に計算する。)の3つの合計を考える。

また,カッター部分は, Fig.3 に示す東洋電機工業所の 水中掘削機-EPK50型(電動型)を使用したタイプと Fig.4 に示す五洋建設の SWAN-3 号の集泥部(Fig.5)を使用した タイプの2種類について試算を行う.

Fig.3 The EPK50-type excavator

Fig.4 SWAN III dredge ship

Fig.5 Outline of the excavator of the SWAN III

EPK50型掘削機は,空中重量 5.8[t]で消費電力 37[KW] であり,掘削した鉱物は水と一緒に水中撹乱サンドポン プ(DPSF-50型空中重量 0.73[t]出力 37[KW] 揚泥量 12[m³/min])によって揚鉱システムまで送るものとする. SWAN-3号の回転式バケット集泥部は,浚渫速度と集泥 機回転速度を同期させることにより、水底地盤を乱すこ となく軟泥を取り込めるため,汚濁発生量が少ない特徴 がある.この集泥機の空中重量は 30[t],集泥機を駆動す る油圧ポンプは 22[KW],スクリューコンベア駆動用油圧 ポンプは 37[KW],さらに 220[KW]のロータリーポンプ2 台で揚鉱システムまで水と一緒に鉱物を送るものとする.

既存の履帯式の方法の場合では、陸上の採鉱機を耐圧 化して海底に沈めると想定しているため、本研究では新 システムのフレーム式とほぼ同じ重量を持つ陸上の採鉱 機を稼働した際の消費電力の計算を行った.

フレーム着底式海底鉱床掘削機のタイプとして,掘削 部に EPK50型を用いて,フレームの大きさを変えた3種 類 (A,B,C) と,SWAN-3号の回転式バケット集泥部を用 いてフレームの大きさを変えた3種類 (D,E,F)の計6種 類について試算する.フレームの大きさに関しては,集 泥部のトロリー横行距離だけが異なるように設定する.A 型のフレームは10[m]×10[m]×10[m]で水中重量は19.5[t], 集泥部空中重量 5.8[t],集泥機駆動電力37[KW],採鉱機 から揚鉱システムまで送るポンプ駆動電力37[KW],採鉱機 から揚鉱システムまで送るポンプ駆動電力37[KW],集泥 機をフレーム内で移動するトロリ駆動電力7.4[KW],ス ラスタ出力22KW,縦移動1回あたりの消費エネルギー は319[KWh]である.B型のフレームは10[m]×20[m]× 10[m]で水中重量は35.7[t],集泥部空中重量 5.8[t],集泥 機駆動電力37[KW],採鉱機から揚鉱システムまで送るポ ンプ駆動電力37[KW],集泥機をフレーム内で移動するト ロリ駆動電力 7.4[KW], スラスタ出力 40KW, 縦移動 1 回 あたりの消費エネルギは 679[KWh]である.

C型のフレームは10[m]×70[m]×10[m]とかなり大きいが 水中重量は44.2[t],集泥部空中重量5.8[t],集泥機駆動電 力 37[KW], 採鉱機から揚鉱システムまで送るポンプ駆動 電力 37[KW], 集泥機をフレーム内で移動するトロリ駆動 電力 7.4[KW], スラスタ出力 49KW, 縦移動1回あたりの 消費エネルギーは 722[KWh]である. SWAN-3 号の集泥部 を用いたフレーム D,E,F のうち D 型のフレームは 10[m] ×10[m]×10[m]で A 型と一緒だが集泥部が重いため水中 重量は 123.5[t],集泥部空中重量 55[t],集泥機駆動電力 22[KW],採鉱機から揚鉱システムまで送るポンプ駆動電 力 477[KW], 集泥機をフレーム内で移動するトロリ駆動 電力 26[KW], スラスタ出力 136KW, 縦移動1回あたり の消費エネルギーは 2017[KWh]である. E 型のフレーム は10[m]×20[m]×10[m]で水中重量は169[t],集泥部空中 重量 55[t], 集泥機駆動電力 22[KW], 採鉱機から揚鉱シス テムまで送るポンプ駆動電力 477[KW],集泥機をフレー ム内で移動するトロリ駆動電力 26[KW], スラスタ出力 186KW, 縦移動1回あたりの消費エネルギーは 2760[KWh]である. F 型のフレームは 10[m]×70[m]× 10[m]で水中重量は 236.6[t], 集泥部空中重量 55[t], 集泥 機駆動電力 22[KW], 採鉱機から揚鉱システムまで送るポ ンプ駆動電力 477[KW], 集泥機をフレーム内で移動する トロリ駆動電力 26[KW], スラスタ出力 261KW, 縦移動 1回あたりの消費エネルギーは3864[KWh]である.

また、フレームを縦移動させて別の採鉱場所へ移動す る間、採鉱できないため、この縦移動に要する時間の見 積もりは重要ではあるが、参考になりそうなデータが全 く存在しないため、縦移動時間はフレームの大きさのみ に依存すると仮定し、フレーム A と D は 15 分、B と E は 30 分、C と F は 105 分として試算を行った.

採鉱システムの年間稼働日数は、メンテナンスに要す る日数や台風などの影響も考慮し、年間 300 日・268 日・ 180日の3パターンを検討する.上記のフレーム着底式海 底鉱床掘削機 ABCDEF および従来の履帯式採鉱機の全 てにおいて、年間揚泥量を300万トンと想定し、上記3 パターンの稼働日数と,各タイプの稼働時間や掘削能力, 揚鉱システムまで鉱物を運ぶポンプ能力から上記揚泥量 の確保に必要な同時稼働採鉱機数を算出した結果、年間 300 日稼働および 268 日稼働で5 基, 180 日稼働で8 基が 必要である.フレーム着底式海底鉱床掘削機 ABCDEF お よび従来の履帯式採鉱機の消費電力コストを比較する際 は、各フレーム着定式のフレーム重量と履帯式採鉱機の 掘削機部分を除いた部分の重量が最も近い陸上型の日立 建機パワーショベルの電力から計算し、また履帯式は常 に採鉱場所を移動するため、稼働できない縦移動が不要 なので24時間稼働できるもとして台数を計算した.各フ レーム着底式との比較対象となる履帯式採鉱機の掘削カ ッター部分はフレーム着底式で用いているものと同一と した. その結果,フレームAとの比較対象の履帯式採鉱 機の空中重量 19.8[t], 掘削カッターと水中サンドポンプ を除いた部分(アームや履帯駆動)の定格出力 122[KW], フレーム B と C の比較対象の履帯式の空中重量 46[t], 掘 削カッターと水中サンドポンプを除いた部分の定格出力 270[KW], フレーム D の比較対象の履帯式採鉱機の空中 重量 111[t], 集泥部と水中サンドポンプを除いた部分の定 格出力 567[KW],フレーム Eの比較対象の履帯式採鉱機 の空中重量 192[t],集泥部と水中サンドポンプを除いた部 分の定格出力 810[KW],フレーム Fの比較対象の履帯式 採鉱機の空中重量 252[t],集泥部と水中サンドポンプを除 いた部分の定格出力 1119[KW]である. Table 1~4 に各採 鉱機の年間消費電力の試算結果を示す.単位が[KWh]な ので今一つコストの実感が湧かないが,標準的な電力料 金である 1[KWH]あたり 15 円で計算すると,履帯式のフ レーム C 相当の電力コストが約 1 億 4600 万円になる.

Table 1 Annual power consumption of the type A, B and C.

Annual	Mining	Annual power consumption[KWh]		
days	location	Frame A	Frame B	Frame C
300 days	PC5	7,442,616	8,011,441	2,636,928
	Site800	1,829,220	1,953,098	782,648
268 days	PC5	7,414,200	7,983,025	2,608,512
	Site800	1,800,804	1,924,682	754,232
180 days	PC5	7,431,960	8,000,784	2,626,272
	Site800	1,818,564	1,942,442	771,992

Table 2 Annual power consumption of the conventional crawler-type excavators counter to type A, B and C.

Annual	Mining	Annual power consumption[KWh]		
operating	location	counter to	counter to	counter to
days		Frame A	Frame B	Frame C
300 days	PC5	4,392,000	9,720,000	9,720,000
	Site800	4,392,000	9,720,000	9,720,000
268 days	PC5	3,923,520	8,683,200	8,683,200
	Site800	3,923,520	8,683,200	8,683,200
180 days	PC5	4,216,320	9,331,200	9,331,200
	Site800	4,216,320	9,331,200	9,331,200

Table 3 Annual power consumption of the type D, E and F.

Annual	Mining	Annual power consumption[KWh]		
g days	location	Frame D	Frame E	Frame F
300	PC5	46,427,741	32,189,369	13,699,216
days	Site800	10,843,090	7,742,289	3,715,545
268	PC5	46,327,901	32,089,529	13,599,376
days	Site800	10,743,250	7,642,449	3,615,705
180	PC5	46,390,301	32,151,929	13,661,776
days	Site800	10,805,650	7,704,849	3,678,105

Table 4 Annual power consumption of the conventional crawler-type excavators counter to type D, E and F.

Annual	Mining	Annual power consumption[KWh]			
operatin	location	Counter to	Counter to	Counter to	
g days		Frame D	Frame E	Frame F	
300	PC5	20,412,000	29,160,000	40,284,000	
days	Site800	20,412,000	29,160,000	40,284,000	
268	PC5	18,234,720	26,049,600	35,987,040	
days	Site800	18,234,720	26,049,600	35,987,040	
180	PC5	19,595,520	27,993,600	38,672,640	
days	Site800	19,525,520	27,993,600	38,672,640	

次に, (フレーム着底式の消費電力/履帯式の消費電 力)×100の計算を行う(Table 5, 6). これは,フレーム 着底式が従来の履帯式システムの消費電力の何%で稼働 できるかを表す. つまり,この値が100%以上の場合は, 従来の履帯式採鉱機が優位であることを示す(黄色の部 分).また,100%以下の場合は,提案手法の着底式採鉱 システムが優位であること示す(緑の部分).

Annual	Mining	Annual power consumption[KWh]		
operating	location	Frame A	Frame B	Frame C
days		/crawler	/crawler	/crawler
300 days	PC5	169 %	82 %	27 %
	Site800	42 %	20 %	8 %
268 days	PC5	189 %	92 %	30 %
	Site800	46 %	22 %	9 %
180 days	PC5	176 %	86 %	28 %
	Site800	43 %	21 %	8 %

Table 5 Comparison of the annual power consumptions between the frame-grounding types and the crawler types.

Table 6 Comparison of the annual power consumptions between the frame-grounding types and the crawler types.

Annual	Mining	Annual power consumption[KWh]		
operating	location	Frame D	Frame E	Frame F
days		/crawler	/crawler	/crawler
300 days	PC5	234 %	113 %	35 %
	Site800	54 %	27 %	9 %
268 days	PC5	254 %	123 %	38 %
	Site800	59 %	29 %	10 %
180 days	PC5	237 %	115 %	35 %
	Site800	55 %	28 %	10 %

Table 5,6 の比較結果より、レアアース泥鉱床の層の厚 みが少ない PC5 では、縦移動を伴うフレームの移動が Site800 より多く発生するため、小型のフレーム着定式採 鉱機は履帯式採鉱機に比べて消費電力で劣る場合が多い ことが分かる.逆に、単にフレームを大型化するだけで 履帯式に比べてフレーム着底式が圧倒的に優位となる. 鉱床の層が厚い場合は履帯式の約 1/10 ほどの消費電力に 抑えられている.しかし、サイズを大きくし過ぎてフレ ーム重量が増えた場合、レアアース堆積物のような超軟 弱地盤に脚部が埋没する危険性を留意しなければならな い.また、建造方法や鉱床までの運搬、メンテナンス等 を考慮してもフレームの大型化には限界がある.

また, Table 1~6のコスト試算は, Fig.1 で示した全体 システム中の「採鉱機システム」部分の, 商用運転時の 年間消費電力だけを比較したものであり, 揚鉱システム や採鉱母船の消費電力やレアアース泥の精錬コストは考 えていない.実現可能性について検討するためには, そ れらの調査に加え, 採鉱機の建造・運搬・メンテナンス 方法の検討およびコストについても検討が必要である.

6. 結 言

本研究では新しい海底資源採鉱システムである「フレ ーム着底式海底資源掘削機」をレアアース泥の採鉱に適 用した場合について取り上げ,年間揚泥量 300 万トンと して稼働した場合の年間消費電力を試算し,従来の履帯 式採鉱機を用いた場合との比較を行った.その結果,フ レームを大型化するほど,また鉱床の厚みが大きいほど フレーム着底式が優位となり,Site800 での採鉱において 履帯式の約 1/10 程度の電力で済むことを示した.また, 履帯式においてはレアアース泥鉱床のような超軟弱地盤 では履帯の沈み込みによって移動できない懸念やオペレ ータによる 24時間連続操作にかかる人件費など上記試算 に含まれないリスクやコストが存在するのに対し,フレ ーム着底式では地形の形状の把握が容易でカッターヘッ ドがフレーム内部にあり安全で位置計測も容易であるた め完全自動化による無人運転が容易で,クローラによる 移動を行わないので採鉱機が「動けない」という懸念や クローラでケーブルを踏んでケーブルを損傷する懸念も ないなど多くの利点を有していることを示した.

参考文献

- 経済産業省資源エネルギー庁(2011年)海底熱水鉱 床開発計画にかかる第1期中間評価報告書.
- 加藤泰浩(2012),「太平洋のレアアース泥が日本を 救う」,PHP研究所..
- 経済産業省資源エネルギー庁,独立行政法人石油天 然ガス・金属鉱物資源機構,海底熱水鉱床開発委員会 (2013 年)海底熱水鉱床開発第1期最終評価報告書.
- 4) 山本耕次(2010年),独立行政法人石油天然ガス・金属鉱物資源機構セミナー・講演会資料「海底熱水鉱床の採鉱システムの検討について」.
- 5) . 石黒慎二,山内由章,小高宏幸,秋山清悟 (2013),海底 熱水鉱床採掘技術試作機の開発,三菱重工技 報,Vol.50.No.2,37~42.
- 6) 近藤操可,中山努,浚渫装置,特開 2005-30138.
- 宮崎 良平,木村元:海底資源掘削法についての考察,日本船舶海洋工学会講演会論文集 Vol.19, pp.89--91 (2014年11月).