Automatic Pipe Routing To Avoid Air Pockets

Kyushu University Dep. of Marine Systems Engineering
Yuto Ando, Hajime Kimura

Outline

- Introduction

1. Approach
2. Air Pockets
3. Simulations

- Conclusion

Motivations

Oil or Chemical Plants

Microchips

Ship Building

Design of Pipelines

Motivations

Design of Pipe-Line in Ship

- Positions of equipment (valves, etc.)
- Piping routes
- Estimation of safety

New
Aoproach

Motivations

Design of Pipe-Line in Ship

- Positions of equipment (valves, etc.)
- Piping routes
- Estimation of safety

New
Approach

Experience of Veterans

Design Complete!

- Veterans are decreasing.

Motivations

Design of Pipe-Line in Ship

- Positions of equipment (valves, etc.)
- Piping routes
- Estimation of safety

Design Complete!

- A lot of time to design.
- Veterans are decreasing.

Purpose

- Automatic Pipe-Line Design System

Purpose

Outline

Introduction

1. Approach

2. Air Pockets

3. Simulations

- Conclusion

Approach of Routing System

- Routing of pipelines

ostacte	
$\sim_{\text {Statt }}$	

- Routing in a network

Approach of Routing System

$\sqrt{\square}$

Approach of Routing System

irected and Weighted Graph

Approach of Routing System

Dijkstra's Method

Directed and Weighted Graph

Approach of Routing System

The Optimized Pipe Route

Directed and Weighted Graph

Pipe Pieces and Items

Pipe Pieces

Straight

Elbow

Bending Part

Pipe Pieces and Items

Pipe Pieces

In the graph

Weight of the Edge $=($ Manhattan distance + Costs of the Pipe Piece $)$ x Diameter

Pipe Pieces and Items

Pipe Pieces

In the graph

Weight of the Edge $=($ Manhattan distance + Costs of the Pipe Piece $)$ x Diameter

Design Objectives

The shortest path

 on the network

- Short
- Not winding

Avoid aisles

- Set on pipe racks

Design Objectives

The shortest path

 on the network

- Short
- Not winding

Change the weight of edges

Design Objectives

- : Heavy weighted edge
(= Aisle)

Design Objectives

- Minimize the total length of piping routes
- Minimize the number of elbows and bending parts
- Avoid aisles as much as possible
- Pass through pipe-rack areas as much as possible

Design Objectives

- Minimize the total length of piping routes
- Minimize the number of elbows and bending parts
- Avoid aisles as much as possible
- Pass through pipe-rack areas as much as possible

Design Objectives

- Minimize the total length of piping routes
- Minimize the number of elbows and bending parts
- Avoid aisles as much as possible
\checkmark Pass through pipe-rack areas as much as possible

Design Objectives

- Minimize the total length of piping routes
- Minimize the number of elbows and bending parts
- Avoid aisles as much as possible
- Pass through pipe-racks areas as much as possible

Design Objectives

- Minimize the total length of piping routes
- Minimize the number of elbows and bending parts
- Avoid aisles as much as possible
- Pass through pipe-racks areas as much as possible
= The shortest path in the weighted graph

Order of Routing

Order of routing in the system = From the largest to the smallest

Order of Routing

Order of routing in the system = From the largest to the smallest

Order of Routing

Order of routing in the system = From the largest to the smallest

Order of Routing

Order of routing in the system = From the largest to the smallest

Order of Routing

- From the largest diameter to the smallest diameter

- Random choice from pipes with same diameters

Outline

- Introduction 1. Approach

2. Air Pockets

3. Simulations

- Conclusion

What's "Pocket" ?

\checkmark U-shaped pipe piece in a vertical direction

- Liquid or gas settle at "Pocket"

What's "Pocket" ?

\checkmark U-shaped pipe piece in a vertical direction
\bullet Liquid or gas settle at "Pocket" \longrightarrow Drain traps
\downarrow

Undesirable pipe piece

Algorithm to avoid "Pockets"

Loading of Start and Goal point

Method1 (Restriction Method)

No pipe ronte

Algorithm to avoid "Pockets"

Loading of Start and Goal point

Method1 (Restriction Method)

$\xrightarrow{\text { Found! }}$ Route without pockets

\downarrow Not Found... : At least one pocket in the route
Method2 (Penalty Method) $\xrightarrow{\text { Found! }}$ Route avoiding pockets as much as possible
\downarrow Not Found...
No pipe route

Method1：Restriction Method

Restriction Method

－Delete candidates making U－turn
－Reduce size of network

No pocket in the route

Method1: Restriction Method

Candidates with the highest costs

Method1: Restriction Method

Route without "Pockets" \Leftarrow

Remove from candidates

Simulation of Restriction Method

(Without consideration of Pockets)

Simulation of Restriction Method

Other test case...

Complex route
(Route with at least one Pocket)

No solution by Restriction Method

Algorithm to avoid "Pockets"

Loading of Start and Goal point

Method1 (Restriction Method)
Found!

Route without pockets

\downarrow Not Found... : At least one pocket in the route
Found!
Method2 (Penalty Method) $\xrightarrow{\text { Route avoiding pockets }}$ as much as possible
\downarrow Not Found...
No pipe route

Method2 : Penalty Method

Penalty Method

- Add penalties on edges connecting vertically.
- Search horizontal candidates as priority.

Route involves "Pockets" as few as possible.

Method2 : Penalty Method

Red arrows: With penalties
Blue arrows: Normal

Candidates with the highest costs

Method2 : Penalty Method

Red arrows: With penalties Blue arrows: Normal

Candidates with the highest costs

Avoid moving vertically as much as possible

Route avoiding Pockets as much as possible

Method2 : Penalty Method

Red arrows: With penalties Blue arrows: Normal

Candidates with the highest costs

- Avoid moving vertically as much as possible

Route avoiding Pockets as much as possible

Simulation of Penalty Method

Outline

Introduction

 1. Approach 2. Air Pockets
3. Simulations

- Conclusion

Simulations

Purpose of simulations

Comparisons of old and new Systems, different mesh sizes, and orders of routing

Simulations

Purpose of simulations

Comparisons of old and new Systems, different mesh sizes, and orders of routing

Test model

- Design Space : $6 \times 6 \times 6$ [m]
- Pipes : $\phi 0.8[\mathrm{~m}] \times 1, \phi 0.6[\mathrm{~m}] \times 2$, $\phi 0.4[\mathrm{~m}] \times 4, \phi 0.3[\mathrm{~m}] \times 6$
- Order : From the largest pipe
- Cost of Elbow : 0.1
- Cost of Bending : 0.3
- Penalty of vertical edge : x2

Simulation1 (Comparison of Old and New Systems)

Old System
(Without consideration of Pockets)

New System
(With Method 1 and 2)

Succeeded to avoid making Pockets

Simulation2 (Comparison of different orders)

Order of routing: Strong influence to the final design.

Simulation3 (Comparison of mesh sizes)

Mesh Size: Strong influence to the routes.

New Mesh Dividing Method

Regular meshes only

New Mesh Dividing Method

Regular meshes only

Regular and additional meshes
Around obstacles, pipes, aisles

- In pipe-racks
- On start and goal points

New Mesh Dividing Method

Regular and additional meshes

Regular meshes only

In short time

In long time

Increase of items (ex. Obstacles) = Increase of additional meshes

New Mesh Dividing Method

Regular Mesh System

Num. of Meshes in Regular Mesh << Num. of Meshes in Add. Mesh

Outline

Introduction 1. Approach 2. Air Pockets 3. Simulations

- Conclusion

Conclusion

New automatic pipe routing system

Minimize number of bending,
Pass through pipe-racks,
Avoid aisles,
Avoid making "Pockets"

New automatic pipe routing system

Minimize number of bending，
Pass through pipe－racks，
Avoid aisles，
Avoid making＂Pockets＂
－Restriction Method（ Reduce the size of graph）
－Penalty Method（ Add penalties to the vertical edges ）

Future Tasks

- Order of Routing
- Search Time
- More practical routes
- Equipment Placing System

This routing system will be opened for free at
http://sysplan.nams.kyushu-u.ac.jp/gen/index.html
Thank you!

