An Automatic Pipe Arrangement Algorithm Considering Elbows and Bends

Dept．of Marine System Engineering，Kyushu University
Yuto Ando
Hajime Kimura

Outline

1. Background and Purpose

- Previous Research

2. Routing Algorithm Including Bends

- Approach
- Outline of "Bends"
- Outline of Pipe-rack Area and Aisle Space
- Experiments

3. Conclusion and Challenges

Background

Pipe Arrangement requires ...

- Keeping to regulations ex.
- Not to set fuel oil pipelines near to electrical equipment.

http://www.cadpipe.com/industrial3D.html

Background

Pipe Arrangement requires ...

- Keeping to regulations
- Meeting demands
ex.
- To shorten the total length
- To set along with the ship hull

http://www.cadpipe.com/industrial3D.html

Background

Pipe Arrangement requires ...

- Keeping to regulations
- Meeting demands
- Originality by each ship

http://www.cadpipe.com/industrial3D.html

Background

Pipe Arrangement requires ...

- Keeping to regulations
- Meeting demands
- Originality by each ship

Experiences of skilled designers

http://www.cadpipe.com/industrial3D.html

Background

Pipe Arrangement requires ...

- Keeping to regulations
- Meeting demands
- Originality by each ship

Experiences skilled designers

http://www.cadpipe.com/industrial3D.html

Automatic Design System

Purpose

Problems are ...
X Optimization of piping routes
X Searching of piping routes
X Constraints

We try for ...

- Solving these problems
- High performance system
- Full automatic design

Previous Research

Goal Point

Approach by Asmara and Nienhuis

- Looking on the pipe arrangement problem as a routing problem in a directed and weighted graph

Solved by "Dijkstra's method"

Disadvantage is ...

- The mesh size is restricted to be larger than a pipe's diameter

Especially in large pipe's diameter
Strong Constraint!

Previous Research

Goal Point

Approach by Martins and Lobo

- To set cost value in each cell
- To set area for pipes : Low Cost Zone
- Routing algorithm is based on G.A.

Disadvantages are...

- Uncertainty of optimal routing
- The mesh size is restricted

Outline

1. Background and Purpose - Previous Research

2. Routing Algorithm Including Bends

- Approach
- Outline of "Bends"
- Outline of Pipe-rack Area and Aisle Space
- Experiments

3. Conclusion and Challenges

Approach

Approach of Routing

Problems of Previous Researches

- Uncertainty of the route with minimum costs
- Demanding of the mesh size on the diameter

Our Approach

- Using "Dijkstra's method"
- Improvement the routing algorithm
- Using not only elbows but "bends"

Approach of Routing

Problems of Previous Researches

- Uncertainty of the route with minimum costs
- Demanding of the mesh size on the diameter

Our Approach

- Using "Dijkstra's method"
- Improvement the routing algorithm
- Using not only elbows but "bends"

Approach of Routing

Problems of Previous Researches

- Uncertainty of the route with minimum costs
- Demanding of the mesh size on the diameter

Our Approach

- Using "Dijkstra's method"
- Improvement the routing algorithm

Approach of Routing

Problems of Previous Researches

- Uncertainty of the route with minimum costs
- Demanding of the mesh size on the diameter

Our Approach

- Using not only elbows but "bends"

Approach

- Design Space
: Box for pipe arrangement
- Start and Goal

Coordinates and vectors

Target Pipeline

Approach

Approach

Approach

Approach

- Obstacle
: Structures and equipments in ships

- Aisle Space

: Space for passages

Approach

Aisle Space
: Space for passages

Approach

- Pipe-rack Area
: Space for pipelines

Dijkstra's Method

This method can ...

- Find the shortest path in a directed and weighted graph
- Guarantee a path with minimum costs

Where is the path with minimum costs

The answer is ...

Design Objectives

- To minimize the total length of pipes
- To minimize the number of elbows and bends
- To avoid aisles as possible
- To pass through pipe-rack areas as possibles

Design Objectives

Cost of 1 Mesh = 1 Cost of Elbows $=0.1$

Total Costs $=$ Cost of Total Length +
Cost of Elbows and Bends
$=12+0.1 \times 4$
$=12.4$

Routing Algorithm

Routing Algorithm

Pipe’s Diameter > Mesh Size

Searching of Straight Pipes

Searching of Straight Pipes

Searching of Elbows

Searching of Elbows

Outline of Bends

"Bends" are ...

- Pipe parts to take the form of gentle S-shape
- Connectors for gaps within the pipe's diameter

Outline of Bends

Outline of Bends

Outline of Bends

Searching of Bends

Constraints of Bending Machine

Searching of Bends

Searching of Bends

Interference Check

Straight

Elbow

Bend

Pipe-rack Area

Pipe-rack : Supporter of pipes

Objectives...

- To bundle pipes
- To progress workability
- To progress maintainability

In the routing system...
Cost Discounting Area

Pipe-rack Area

Pipe-rack Area

Experiments

Design Space : Size X 3.0m, Size Y 2.5m, Size Z 2.0m
Mesh Size : Size X 0.25 m , Size Y 0.25 m , Size Z 0.25 m
Start Point : $(0.5 \mathrm{~m}, 2.0 \mathrm{~m}, 0.5 \mathrm{~m}), \mathrm{x}+$
Goal Point : $(2.75 \mathrm{~m}, 2.0 \mathrm{~m}, 0.5 \mathrm{~m}), \mathrm{x}^{-}$
Discount Rate : 0.3

Aisle Space

Aisle Space : Passage for Crew

Objective...

- To improve safety
- To progress maintainability

In the routing system...
Cost Increasing Area

Aisle Space

Aisle Space

Experiment

Design Space : Size X 3.0m, Size Y 2.5m, Size Z 2.0 m
Mesh Size : Size X 0.25m, Size Y 0.25m, Size Z 0.25m
Start Point : $0.5 \mathrm{~m}, 0.5 \mathrm{~m}, 1.5 \mathrm{~m}), \mathrm{z}^{-}$
Goal Point $\quad:(2.75 \mathrm{~m}, 0.5 \mathrm{~m}, 0.5 \mathrm{~m}), \mathrm{z}+$
Extra rate : 3.0

Simulations

Objective

To verify the useful of the algorithm through drawing pipes in a part of a ballast pomp room

Test Case Setting

Design Space : Size X 8.0m, Size Y 12.0m, Size Z 4.0m
Mesh Size : Size X 0.25 m , Size Y 0.25 m , Size Z 0.25 m
Discount Rate of Pipe-rack Area: 0.5
Extra Rate of Aisle Space : 2.0

Experiments

Cost of a Straight Pipe : $1 \times \mathrm{R}$ per 1 m

Experiments

Cost of a Elbow: $(\mathrm{d} 1+\mathrm{d} 2+0.1) \times \mathrm{R}$

Experiments

Cost of a Bend: $(\mathrm{d} 1+\mathrm{d} 2+0.3) \times \mathrm{R}$

Results

Order1 : From the largest

Total Cost : 13.95
Total Cost : 5.4

Results

Order1 : From the largest

Total Cost : 23.42

Order2 : From the longest

Total Cost : 11.90

Results

Order1 : From the largest

Total Cost : 29.95

Order2 : From the longest

Total Cost : 30.08

Results

Order1 : From the largest

Total Cost : 35.22

Order2 : From the longest

Total Cost : 37.78

Discussion

Order1 : From the largest

Order2 : From the longest

- The algorithm succeeded finding routes with bends.
- Simulated routes passed the pipe-rack area.

Last design demands on the order of routing.

- The system often drew pipes those are difficult to assemble.

Discussion

An obtained route interfered with itself!

Outline

1. Background and Purpose

- Previous Research

2. Routing Algorithm Including Bends

- Approach
- Outline of "Bends"
- Outline of Pipe-rack Area and Aisle Space
- Experiments

3. Conclusion and Challenges

Conclusions

Advantages of the algorithm

- The mesh size is free.
- The algorithm generates practical designs with bends.
- The algorithm draws each pipe with optimum costs.
- The drawing pipes are considered_pipe-rack-area and aisle space.

Future Works

We need to ...

- Improve the routing algorithm
\checkmark Associate the routing system with the equipment layout system
- Make better the interference check algorithm
- Investigate best order of routing

This system will be opened for free at

http://sysplan.nams.kyushu-u.ac.jp/gen/index.html

Thank You.

This system will be opened for free at
http://sysplan.nams.kyushu-u.ac.jp/gen/index.html

