Automatic Design

Hajime Kimura (Kyushu University, Japan)Satoshi Ikehira (Kyushu University, Japan)

Shipbuilding ICCAS 2009

Overview

1. Motivation and Purpose

2. Evaluation Algorithm for Pipe Operationality

Accessibility

Possibility of Valve Handling

3. Multi-Objective Optimization Algorithm

Coding for Genetic Algorithm (Only Valves) Multi-Objective Genetic Algorithm: NSGA- II Routing Pipes and Making Branches

4. Experiments

5. Conclusion and Future Works

Not only to arrange shortest pipes between equipments!
ex.) Easy to operate valves, easy for maintenance, etc.
Answer → 1) Define numerical evaluation for all items
2) Formulate as a multi-objective optimization

Not only to arrange shortest pipes between equipments!
ex.) Easy to operate valves, easy for maintenance, etc.
Answer → 1) Define numerical evaluation for all items
2) Formulate as a multi-objective optimization

[Reason 2] A Problem in designing algorithms

It is no use that the algorithm gives only one solution! Answer → Show plural solutions Designer selects one of them as he needs.

Not only to arrange shortest pipes between equipments!
ex.) Easy to operate valves, easy for maintenance, etc.
Answer → 1) Define numerical evaluation for all items
2) Formulate as a multi-objective optimization

[Reason 2] A Problem in designing algorithms

It is no use that the algorithm gives only one solution! Answer → Show plural solutions Designer selects one of them as he needs.

Overview

1. Motivation and Purpose

2. Evaluation Algorithm for Valve Operationality

Accessibility

Possibility of Valve Handling

3. Multi-Objective Optimization Algorithm

Coding for Genetic Algorithm (Only Valves) Multi-Objective Genetic Algorithm: NSGA- II Routing Pipes and Making Branches

4. Experiments

5. Conclusion and Future Works

Valve Operationality

Evaluation of the space from pathways to valves

Valve Operationality

Evaluation of the space from pathways to valves

Valve Operationality

Evaluation of the space from pathways to valves

All pipes and valves must be arranged not only to put without interference each other but also to make space from pathways to valves so that crew can access the valves.

Implicit and Obscure so far!

To apply optimization algorithms, <u>Numerical evaluation for the valve</u> <u>operationality</u> is needed.

Evaluation Algorithm for Valve Operationality

Features of the Evaluation Algorithm

Valve-Operationality is clearly numerically defined.

Overview

1. Motivation and Purpose

2. Evaluation Algorithm for Valve Operationality

Accessibility

Possibility of Valve Handling

3. Multi-Objective Optimization Algorithm

Coding for Genetic Algorithm (Only Valves) Multi-Objective Genetic Algorithm: NSGA- II Routing Pipes and Making Branches

4. Experiments

5. Conclusion and Future Works

Not only to arrange shortest pipes between equipments!
ex.) Easy to operate valves, easy for maintenance, etc.
Answer → 1) Define numerical evaluation for all items
2) Formulate as a multi-objective optimization

[Reason 2] A Problem in designing algorithms

It is no use that the algorithm gives only one solution! Answer → Show plural solutions Designer selects one of them as he needs.

Not only to arrange shortest pipes between equipments! ex.) Easy to operate valves, easy for maintenance, etc.

Answer → 1) Define numerical evaluation for all items
2) Formulate as a multi-objective optimization

[Reason 2] A Problem in designing algorithms

It is no use that the algorithm gives only one solution! Answer → Show plural solutions Designer selects one of them as he needs.

Multi-Objective Genetic Algorithm (MOGA)

NSGA-II

NSGA-II: Nondominated Sorting Genetic Algorithms II

Multi-objective Genetic algorithm

- 1. Efficient calculation in Nondominated Sorting
- 2. Crowding distance
- 3. Elite strategy

Reference

Kalyanmoy Deb: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA- II, IEEE Transactions on Evolutionary Computation, vol. 6, No. 2, (2002)

Problem Formulation

Material Cost

Material Cost Function

$$f_{-material} = \sum_{k=1}^{n_p} W_k L_k D_k$$

$$W_k$$
: Weight of the kth pipe

- L_k : Length of the kth pipe
- D_k : Diameter of the kth pipe

$$n_p$$
: Number of pipes

Coding for the Genetic Algorithm (GA)

Routing Pipes (1) Valves, pumps, connections or branches. Each point has location and direction

Routing Pipes (2)

Modification for Interfered Pipes

Pipes are Interfered

Infeasible!

Routing Pipes (2)

Modification for Interfered Pipes

Generating Branches of Pipes

Generating Branches of Pipes

Main route

Overview

1. Motivation and Purpose

2. Evaluation Algorithm for Valve Operationality

Accessibility

Possibility of Valve Handling

3. Multi-Objective Optimization Algorithm

Coding for Genetic Algorithm (Only Valves) Multi-Objective Genetic Algorithm: NSGA- II Routing Pipes and Making Branches

4. Experiments

5. Conclusion and Future Works

Experiments

Pipeline list

Input : From-to list

LINE NO	FLUID	SIZE	CLASS	FROM-TO						
P-001	S	150	-	V1	P1	V3		-	-	
P-002	S	150	-	V1	V5	CP3		-		
P-003	P	150	-	P1	V2	V5	-	-		
P-004	Р	150		V2	CP1	V3	V4	-	-	
P-005	D	150	-	V4	CP2	-	-	-	-	

VALVE NO	SIZE L	SIZE D	SIZE H	CLASS	AFTER			FORWARD			
V1	0.3	0.3	0.5	-	V5	CP3	-	P1	V3	-	
V2	0.3	0.3	0.5	-	P1	V5	-	V3	V4	CP1	
V3	0.3	0.3	0.5	-	P1	V1	-	V2	V4	CP1	
V4	0.5	0.5	0.8	-	CP2	-		V2	V3	CP1	
V5	0.5	0.5	0.8	-	P1	V2	-	V1	CP3	-	

Equipment arrangement list

Input : Equipment list

EQUIP-NO	CATEGORY	TYPE	X	Y	Z	DIR	AFTER			1)	
P1	PUMP	RK2	1.5	2.0	0.0	90.0	V1	V3		V2	V5	-
Ge.											_	
							V1			V2		
	CATEGORY	TYPE	SIZE X	SIZE Y	SIZE Z	Х	Y	Z	X	Y	Z	
	PUMP	RK2	0.8	0.8	0.8	0.4	0.0	0.4	0.4	0.8	0.4	
	-13 						V3			V4		
						Х	Y	Z	Х	Y	Z	
						0.4	0.0	0.4	-	-	-	
							V5			CP1		
						Х	Y	Z	Х	Y	Z	
						0.4	0.8	0.4	-	-	-	
						CP2			CP3			
						Х	Y	Z	Х	Y	Z	
						-	-	-	-	-	-	

Total							
Valves:	5						
Equipments:	1						
Connections:	3						
Pipelines:	5						
Pipes:	10						
Parameters:	45						
Combination	over 10 ¹²						

Results

Obtained 3D Models

Material Cost = 8.12 Cost of Valve Operationality = 0

Material Cost = 5.50 Cost of Valve Operationality = 10001

<u>Multi-Objective Optimization algorithm enables us to</u> <u>show plural Pareto-Optimal solutions simultaneously.</u>

3D Models in the other settings

Narrow space

More Complex Pipeline

The more Improvement of the optimization algorithm is needed.

Overview

1. Motivation and Purpose

2. Evaluation Algorithm for Valve Operationality

Accessibility

Possibility of Valve Handling

3. Multi-Objective Optimization Algorithm

Coding for Genetic Algorithm (Only Valves) Multi-Objective Genetic Algorithm: NSGA- II Routing Pipes and Making Branches

4. Experiments

Conclusions and Future Works

Conclusions

Make obscure criteria to be clear 1. supposition in Automatic Pipe Arrangement

Treat as multi-objective problem

- 2. Valve Operationality Evaluation Algorithm is proposed.
- 3. An Implementation of Multi-objective GA for pipe arrangement is proposed.

Future Works

1. Algorithm Improvement taking in the expert's designing procedure that the pipe routing is determined first, thereafter, valves are set in the arranged pipes.

2. Evaluation Algorithm for Easiness of Pipe Maintenance

