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An Actor-Critic Algorithm using a Binary Tree Action Selector

Reinforcement Learning to Cope with Enormous Actions

Hajime Kimura∗ and Shigenobu Kobayashi∗∗

In real world applications, learning algorithms often have to handle several dozens of actions, which have some

distance metrics. Epsilon-greedy or Boltzmann distribution exploration strategies, which have been applied for

Q-learning or SARSA, are very popular, simple and effective in the problems that have a few actions, however, the

efficiency would decrease when the number of actions is increased. We propose a policy function representation

that consists of a stochastic binary decision tree, and we apply it to an actor-critic algorithm for the problems

that have enormous similar actions. Simulation results show the increase of the actions does not affect learning

curves of the proposed method at all.
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1. Introduction

Reinforcement learning (RL) is a promising approach

for robots to improve the behavior themselves or make up

for lack of knowledge about the tasks 4). Learning control

in real world applications requires dealing with both con-

tinuous state and several dozens or more of actions. There

are many works about the generalization techniques to

approximate value functions over state space; CMAC 8)

is one of linear architectures, and the others are neural-

networks, Fuzzy methods 3), instance-based methods 2),

etc. To deal with dozens of actions, not only the tech-

niques of action value approximation but also exploration

strategies are essential. Q-learning or SARSA algorithms

with ε-greedy or softmax action selection rules are very

popular, simple and effective in the problems which have

a few actions. However, in these flat selection methods,

the efficiency would decrease when the number of actions

is increased.

You know, for example in our daily life, when we op-

erate a handle, we will choose ’turn right’ or ’turn left’

at first, and there after we will select the amount of the

operation, ’small’, ’medium’ or ’large’. Thus, hierarchical

decision making is more effective than flat action selection

when there exisis many similar actions. In this example,

we group ’small turn left’, ’medium turn left’ and ’large

turn left’ into a higher hierarchical action ’turn left’ un-

consciously. In many real-world applications, the actions

can be grouped and ranked in the same way. In this pa-

per, a reinforcement lerarning approach that uses hierar-
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chical action selection scheme for the problems that have

enormous similar actions is proposed. It adopts a pol-

icy function representation that consists of a stochastic

binary decision tree, and updates the policy parameters

by an actor-critic algorithm 1) 5) 8). The knowledge of the

order of the action groups is easily embedded in the tree

structure of the decision making by designers in advance.

Simulation results show the increase of the actions does

not affect learning curves of the proposed method at all

when the action space is assumed to have some good dis-

tance metric.

2. Problem Formulation

2. 1 Markov Decision Processes

Let S denote state space, A be action space, R be a

set of real number. At each discrete time t, the agent

observes state st ∈ S, selects action at ∈ A, and then

receives an instantaneous reward rt ∈ R resulting from

state transition in the environment. In general, the re-

ward and the next state may be random, but their proba-

bility distributions are assumed to depend only on st and

at in Markov decision processes (MDPs), in which many

reinforcement learning algorithms are studied. In MDPs,

the next state st+1 is chosen according to the transition

probability T (st, a, st+1), and the reward rt is given ran-

domly according to the expectation r(st, a). The agent

does not know T (st, a, st+1) and r(st, a) ahead of time.

The objective of reinforcement learning is to construct a

policy that maximizes the agent’s performance. A natu-

ral performance measure for infinite horizon tasks is the

cumulative discounted reward:

Vt =

∞∑

k=0

γk rt+k , (1)
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where the discount factor, 0 ≤ γ ≤ 1 specifies the impor-

tance of future rewards, and Vt is the value at time t. In

MDPs, the value can be defined as:

V π(s) = E

[ ∞∑

t=0

γt rt

∣∣∣∣∣ s0 = s, π

]
, (2)

where E{·} denotes the expectation. The objective in

MDPs is to find an optimal policy that maximizes the

value of each state s defined by Equation 2.

2. 2 MDPs with Enormous Similar Actions
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Fig. 1 A modified puddle-world problem. There are 4, 8, 16,

32, or 64 actions, which moves approximately 0.05 in

these directions. The state space is continuous and

two-dimensional, which is bounded by [0, 1] for each

dimension.

Many real world applications would have a feature that

neighboring actions will almost result in similar state

transitions. Fig. 1 illustrates the example using a puddle-

world task 7) but it is slightly modified from the origi-

nal formulation. The state space is continuous and two-

dimensional, which is bounded by [0, 1] for each dimen-

sion. When the agent selects an action, the agent moves

approximately 0.05 in that direction unless the movement

would cause the agent to leave the limits of the space. A

random Gaussian noise with standard deviation 0.01 was

added to the motion along both dimensions. Obviously,

the more actions increase (especially in 32 or 64 actions),

the more similar state transitions occur. The details of

the puddle world are as below. The rewards on this task

were −1 for each time step plus additional penalties if ei-

ther or both of the two oval puddles were entered. These

penalties were −400 times the distance into the puddle

(distance to the nearest edge). The puddles were 0.1

in radius and were located at center points (0.1, 0.75) to

(0.45, 0.75) and (0.45, 0.4) to (0.45, 0.8). The initial state

of each episode was selected randomly uniformly from the

non-goal states.
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Fig. 2 A standard actor-critic architecture.

3. Actor-Critic Method for binary-tree
action selector

Almost traditional value-based methods such as Q-

learning or SARSA are dealing with the problems shown

in Section 2. 2 by generalization techniques over the action

space. But such value-based methods work poor in non-

Markovian environments, and it needs enormous number

of iteration for estimating the state-action value. On the

other hand, actor-critic algorithms are robust against non-

Markovian environments, and its policy improvement is

much faster. However, the actor-critic methods does not

have any scheme for dealing with many similar actions

shown in Section 2. 2 making use of such problem’s prop-

erty. We propose a new action selection scheme for the

actor-critic methods.

3. 1 Actor-Critic Algorithm

As shown in Fig. 2, the actor-critic algorithm is com-

posed of two modules; One is actor that selects action, and

the other is critic that evaluates states. The actor imple-

ments a stochastic policy that maps from a representation

of a state to a probability distribution over actions. The

critic attempts to estimate the evaluation function V̂ (s)

for the current policy. After each action selection, the

critic evaluates the new state to determine whether things

have gone better or worse than expected. The evaluation

is known as temporal difference (TD), and it is used to

evaluate the action just selected as an effective reinforce-

ment. When the TD is positive, then the executed action

would be good, therefore the probability of choosing that

action is increased. Contrary, when the TD is negative,

then the action would be bad, and the probability of that

action is decreased.

Fig. 3 specifies an actor-critic algorithm we used 5). It

is noteworthy that both the actor and the critic adopt el-
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� �

(1) Observe state st, choose action at with proba-

bility π(at, θ, st) in the actor, and perform it.

(2) Observe immediate reward rt, resulting state

st+1, and calculate the TD-error according to

(TD-error) = rt + γ V̂ (st+1)− V̂ (st) , (3)

where 0 ≤ γ ≤ 1 is the discount factor, V̂ (s) is an

estimated value function by the critic.

(3) Update the estimating value function V̂ (s) in

the critic according to the TD(λ) method as follows:

ev(t) =
∂

∂w
V̂ (st) ,

ev(t) ← ev(t) + ev(t) ,

Δw(t) = (TD-error) ev(t) ,

w ← w + αv Δw(t) ,

where ev denotes the eligibility of the parameter w in

the function approximator V̂ (s), ev is its trace, and αv

is a learning rate.

(4) Update the actor’s stochastic policy according

to

eπ(t) =
∂

∂θ
ln

(
π(at, θ, st)

)
,

eπ(t) ← eπ(t) + eπ(t) ,

Δθ(t) = (TD-error) eπ(t) ,

θ ← θ + απ Δθ(t) ,

where eπ is the eligibility of the policy parameter θ, eπ

is its trace, and απ is a learning rate.

(5) Discount the eligibility traces as follows:

ev(t + 1) ← γ λv ev(t) ,

eπ(t + 1) ← γ λπ eπ(t) ,

where λv and λπ (0 ≤ λv , λπ ≤ 1) are discount factors

in the critic and the actor respectively.

(6) Let t← t + 1, and go to step 1.

� �

Fig. 3 An actor-critic algorithm making use of eligibility

traces in both the actor and the critic.

igibility traces; obviously TD(λ) in the critic refers to use

it, and the actor uses eligibility traces on policy param-

eters. The calculation scheme of the TD(λ) in the critic

is described in Step 3 and 5 in Fig. 3. The parameter λv

specifies the eligibility trace of the TD(λ = λv). In the ac-

tor, the policy is explicitly represented by its own function

approximator, and updated according to the gradient of

value function with respect to the policy parameters 5) 9).

Let π(a, θ, s) denote probability of selecting action a under

the policy π in the state s. That is, the policy is repre-

sented by a parametric function approximator using the

internal parameter vector θ. The agent can improve the

policy π by modifying the parameter θ. For example, θ

corresponds to synaptic weights where the action selecting

probability is represented by neural networks, or θ means

weight of rules in classifier systems. The form of the func-

tion π(a, θ, s) is specified for the binary-tree action selec-

tor in this paper. The actor’s learning rule is shown in

Step 4 and 5 in Fig. 3. The eligibility eπ is the same

variable defined in REINFORCE algorithms 12). The pa-

rameter λπ specifies the actor’s eligibility trace, but its

features are somewhat different from TD(λ)’s. When λπ

is close to 0, the policy would be updated according to the

gradient of the estimated value function V̂ , and when λπ

is close to 1, the policy would be updated by the gradient

of the actual return, defined by Equation 1 5).

3. 2 Binary-Tree Action Selector
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(1) Start at the root of the tree, choose the branch

1 with probability f1 (or the branch 0 with probability

1− f1).

(2) At the selected branch node, continue the same

process until a leaf is encountered. If the node f2 is

selected, choose 1 with probability f2 (or 0 with prob-

ability 1 − f2). If the selected node is f3, then choose

1 with probability f3, etc. And take the corresponding

branch.

(3) At the resulting leaf node, execute the corre-

sponding action a.

(4) Calculate eligibilities for all nodes by

∂

∂fj
ln π(a, θ, s) =

{
yj−fj

fj(1−fj)
if fj is active

0 otherwise,

where yj ∈ {0, 1} is the outcome of the node fj .

� �

Fig. 4 A binary-tree action selection scheme for four actions,

and its policy representation. fi denotes a probability

distribution function.

Here we propose a new technique for policy gradient

methods to cope with enormous similar actions. Fig. 4

illustrates the binary-tree action selector for four actions.

The stochastic policy is represented by a binary decision

tree. Leaves of the decision tree are primitive actions, and

the other nodes branch to two ways following the corre-

sponding probability fi. Formally, the policy function is

given by

π(a, θ, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1 f2 a = a1

f1 (1− f2) a = a2

(1− f1) f3 a = a3

(1− f1) (1− f3) a = a4

(4)
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Then the eligibility for f1 is given by

∂

∂f1
ln π(a, θ, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1/f1 a = a1

1/f1 a = a2

−1/(1− f1) a = a3

−1/(1− f1) a = a4

=
y1 − f1

f1(1− f1)
, (5)

where y1 ∈ {0, 1} denotes the outcome of the unit f1.

Similarly, the eligibility for f2 (or f3) is given by

∂

∂f2
ln π(a, θ, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1/f2 a = a1

−1/(1− f2) a = a2

0 a = a3

0 a = a4

=

{
y2−f2

f2(1−f2)
if f2 is active

0 otherwise.
(6)

This result says that the calculation of the eligibility at

each node is the same and can be done by only local infor-

mation. The eligibility on the executed path from the root

of the tree to a leaf is simply given by (yj − fj)xi, other-

wise 0. This property remains in different size of the trees.

The required memory size (the number of nodes) is pro-

portional to the number of actions minus 1 (see Fig. 5).
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Fig. 5 The binary trees for 6, 7 and 8 actions.

3. 3 Actor-Critic with Binary-Tree Action se-

lector

This section specifies the scheme of the actor-critic al-

gorithm shown in Section 3. 1 using the binary-tree ac-

tion selector shown in Section 3. 2. A feature vector

(x1, x2, · · · , xi, · · · , xn) is given to the agent as the state

input s. Especially, (x1(t), x2(t), · · · , xi(t), · · · , xn(t)) de-

notes the feature vector where the time step is t. The

features must be constructed from the states in many dif-

ferent ways so that the feature vectors are linearly inde-

pendent between the essential states. In the critic, the

state value function is given by a linear function using

weight parameters wi and the features xi as:

V̂ (s) =

n∑

i=1

wi xi . (7)

In this case, the gradient-descent TD(λ) algorithm has a

sound convergence property 10). The eligibility evi of the

parameter wi is given by (∂V̂ (s))/(∂wi) = xi.

Using the feature vector, the branching probability fj

in each node is given by

fj =
1

1 + exp(−∑n

i=1
θjixi)

, (8)

where θji denotes policy parameters. The fj is monotone

increasing function, and 0 < fj < 1. From Equation 5, 6

and 8, ∂fj/∂θji = xi fj(1−fj), then the eligibility eπji of

θji is given by

eπji =
∂fj

∂θji

∂

∂fj
ln π(a, θ, s)

=

{
(yj − fj)xi if fj is active

0 otherwise.
(9)

where yj ∈ {0, 1} denotes the selected branch (0 or 1) in

the node fj .

The specified scheme of the proposed algorithm for the

number of actions is m and the number of features is n is

given as:

(1) Initialize: Arrange parameters wi (i = 1 · · ·n)

in the critic, corresponding eligibility traces evi, pol-

icy parameters θji (j = 1 · · ·m − 1) in the actor, and

corresponding eligibility traces eπji.

(2) Generate a feature vector (x1(t), x2(t) · · ·xn(t))

from the state input st.

(3) Action selection in the actor by the binary-tree:

(a) Start at the root node j = 1.

(b) In the node fj , calculate as follows:

fj =
1

1 + exp(−∑n

i=1
θjixi(t))

Choose the branch 1 following the probability fj , oth-

erwise choose the branch 0.

(c) Repeat the same calculation in the successor

node until reaching the leaf node.

(d) Execute action a in the resulting leaf node.

(e) Calculate the eligibility in the all node j as

eπji(t) =

{
(yj − fj)xi(t) if fj is active

0 otherwise,

where yj ∈ {0, 1} is the outcome of the unit fj .

(4) Calculate TD-error in the resulting state st+1 and

the reward rt as

(TD-error) = rt + γ V̂ (st+1)− V̂ (st)

= rt + γ

(
n∑

i=1

wi xi(t + 1)

)
−

n∑

i=1

wi xi(t)
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(5) Update V̂ (s) in the critic:

evi(t) = xi(t) ,

evi(t) ← evi(t) + evi(t) ,

Δwi(t) = (TD-error) evi(t) ,

wi ← wi + αv Δwi(t) ,

(6) Update policy parameters in the actor:

eπji(t) ← eπji(t) + eπji(t) ,

Δθji(t) = (TD-error) eπji(t) ,

θji ← θji + απ Δθji(t) ,

(7) Discount the eligibility traces:

evi(t + 1) ← γ λv evi(t) ,

eπji(t + 1) ← γ λπ eπji(t) ,

(8) Increment the time step as t ← t + 1 and go to

step 2.

3. 4 Features

When the number of actions are m, the action selection

is executed by log2 m alternatives. The calculation for

the choosing action or finding eligibilities is executed only

along the selected path in the tree structure, and also it

is very simple using only local information in each node.

Such a local calculation property is quite suited for large

scale problems. The proposed method is strictly a sub-

class of the actor-critic algorithm 5), therefore it can avoid

influence of the non-Markovian effect than Q-learning.

3. 5 Conventional Methods and Related Works

In conventional actor-critic methods, Boltzmann action

selection scheme 8) is frequently used. The same as Sec-

tion 3. 3, a n-dimensional feature vector is given to the

agent. When the number of actions is m, policy param-

eters θji (j = 1 · · ·m, i = 1 · · ·n) and the corresponding

eligibility traces eπji are arranged. The agent selects an

action ak with the following probability:

Pr(ak|s) =
exp
(∑n

i=1
xiθki

)
∑m

j=1
exp
(∑n

i=1
xiθji

) . (10)

The eligibility for the policy parameters are calculated in

the following 6):

eπji(t) =

{
−Pr(aj |s) xi if aj �= ak,

(1− Pr(aj |s)) xi if aj = ak.

The flat-action-selecting actor-critic is achieved by replac-

ing the above with the process of the actor in Section 3. 3.

The Q-learning and the SARSA(λ) approximate state-

action values as Q(s, a) =
∑n

i=1
xiwai, and use ε-greedy

policy, that is, one selects random action with probability

ε, or with probability 1− ε, one selects an action that has

largest Q value. Let st be a state at time t, xi(t) be its

feature, at be the selected action at t, st+1 and xi(t + 1)

be the resulting state and its feature, at+1 denote the se-

lected action at t + 1, then the Q-learning rule is

Δwati = xi(t)
(
rt + γ max

a
Q(st+1, a)−Q(st, at)

)

wati ← wati + αΔwati ,

for all i ∈ {1, 2, · · ·n}, and α denotes a learning rate fac-

tor. The learning rule of SARSA(λ) is given by

(TD-error) = rt + γQ(st+1, at+1)−Q(st, at)

eati(t) = xi(t) + eati(t)

Δwai = eai(t) (TD-error) for all a

wai ← wai + αΔwai for all a

eai(t + 1) = γ λ eai(t) for all a,

for all i ∈ {1, 2, · · ·n}. eai denotes eligibility traces. The

Q-learning requires n×m variables for wi to approximate

Q(s, a). The SARSA(λ) needs 2× n×m variables for wi

and its trace eai. It is noteworthy that the SARSA(λ)

costs the memory exactly the same size as our method’s.

4. Simulation Experiment

The purpose of this experiment is to investigate the

influence of increasing the number of actions on the al-

gorithms. We tested our algorithm on the puddle world

problem shown in Fig. 1, and compared it with Q-learning

and SARSA(λ) algorithms. We used a tile coding method
8) to construct a feature vector from 2-dimensional state

input as shown in Fig. 6. That feature vector includes

12 + 22 + 32 + · · · + 72 = 140 features (x1, x2, · · ·x140)

from broad 1 × 1 to narrow 7 × 7 gridding tiles. Each

tile corresponds with the component of the feature vec-

tor. When a state input is given to m×m gridding tiles,

then the corresponding component takes m2/140, and the

others are 0.

Throughout the experiments, in our actor-critic al-

gorithm, the discount factor γ = 1, the learning rate

αv = 0.1, απ = 0.01, and λv = λπ = 0.9. In the Q-

learning, the learning rate α = 0.5 and ε = 0.1. In the

SARSA(λ), the learning rate α = 0.1, ε = 0.1 and λ = 0.9

Figs. 7, 8, 11, 12 are the results showing influence of

the number of actions on the binary-tree actor-critic, flat

actor-critic, Q-learning and SARSA(λ) respectively. In

each graph, ’Cost’ denotes the total cost from the start

position to the goal area, and ’Trial’ denotes the num-

ber of trials, where one trial begins start position and

ends in the goal. Although the numbers of actions were

different, yet the actor-critic using the binary-tree policy

performed very similar learning curves without any pa-

rameter tuning nor scheduling. On the other hand, the
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Fig. 6 A tile coding method to generate a feature vector,

which contains all features from broad to narrow

over a continuous two-dimensional state space. Any

state is in exactly one tile of each tiling. Each tile

is associated with one element of the feature vec-

tor (x1, x2, · · ·x140). The number 140 is come from

12 + 22 + 32 + · · ·+ 72. When a state input is in some

certain tiles, the corresponding tiles are activated and

their elements are set to some positive value (e.g., 1×1

tiling is 1/140, etc.). The other elements are set to

zero.
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Fig. 7 Performance on the actor-critic method using the

binary-tree action selector, averaged over 100 trials.

αv = 0.1, απ = 0.01, λv = 0.9, λπ = 0.9.

learning curves of the ε-greedy strategy were strongly af-

fected with the numbers of actions on the Q-learning and

the SARSA. Fig. 10 shows the performance of the actor-

critic using the binary-tree action selector in the puddle

world with randomly labeled actions as shown in Fig. 9.

It is noteworthy that the proposed method can work at

least the same as the flat actor-critic in the puddle world

with randomly labeled actions.
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Fig. 9 An example which are randomly labeled actions in the

puddle world.
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Fig. 10 Performance on the actor-critic method using the

binary-tree action selector in the puddle world with

randomly labeled actions, averaged over 100 trials.

αv = 0.1, απ = 0.01, λv = 0.9, λπ = 0.9.

5. Applying to Real Robots

We applied the algorithms to a learning task in real two

robots that have 2 d.o.f. as shown in Fig. 13. The objec-
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Fig. 11 Performance on Q-learning using ε-greedy policy av-

eraged over 100 trials. ε = 0.1, learning rate = 0.5.
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Fig. 12 Performance on SARSA(λ) using ε-greedy policy av-

eraged over 100 trials. ε = 0.1, learning rate = 0.1,

λ = 0.9. Note that this algorithm costs the memory

exactly the same size as our method’s.

(A) (B)

theta1

theta2

theta1

theta2

Fig. 13 Real two robots and their models. The Robot-A has

a two-link arm. The Robot-B consists two boxes with

an actuated joint which bends and twists the body.

tive of the learning is to find effective behavior to move

forward. The learning agent interacts with the robot (i.e.,

the environment) as below:

(1) The agent observes the angles of the joints θ1, θ2

as a state input.

(2) The agent selects a destination of angular posi-

tions of the joints a1, a2 as an action output.

(3) The robot moves each joint to the destination.

(4) After about 0.2 sec, distance of the movement is

measured and given to the agent as immediate reward.

(5) Go to step 1.

The angles of the joints θ1, θ2 as the state input and a1, a2

as the action output are arranged to take discrete value

from 0 to 7. The reward signal also takes discrete value

from −128 to 127. When the body does not move, the

reward is 0.

Each joint is drived by a hobby-use servo motor that

reacts to angular position commands. The angular posi-

tion command is used as the current angle of the joint.

Therefore, when the agent selects destination angles that

is largely different from the latest angles (the difference is

over 3), hidden state problem is occured quite often be-

cause the slow response of the motor cause errors between

the true angle of the joints and the state input signal.

Since the agent selects action from the eight choices in

each joint, the number of actions are 8 × 8 = 64 in the

space of the two joints. In the flat action selection method,

the agent deals with all the 64 actions equally. In the bi-

nary action selection method, the agent selects upper or

downward groups of the angles with respect to the joint

1 in the root node (the first layer), and next the agent se-

lects upper or downward groups of the angles with respect

to the joint 2 in the node of the second layer. In the 3rd

layer, the agent selects again upper or downward groups

of the angles with respect to the joint 1 where the element

of the groupes are composed of the group that is selected

in the root node. In the 4th layer, the agent selects again

upper or downward groups of the angles with respect to

the joint 2 where the element of the groupes are composed

of the group that is selected in the second layer. Thus, the

decisions for joint 1 and 2 are assigned alternately to the

layers in the binary-tree. The better implementation may

exist, however, this is one of the simplest way to make

a tree structure for decision making in two-dimensional

action space. The feature vector for the state input is

generated by using the tile-coding shown in Fig. 6, since

the state space is the same two dimensional as the puddle

world.

In order to measure the distance of the movement, a
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Fig. 14 Performances of actor-critic algorithms on the real

robots.

wheel that has a diameter of 3cm is attached to the body,

and turning full circle of the wheel generates 200 pulses.

The reward signal is generated by the turning direction

of the wheel as the positive or negative sign of the re-

ward and by the number of pulses as the magnitude of

the reward. Thus, 1, 000 pulses are equivalent to about 50

cm. The experiment is executed in 3, 000 steps, that takes

about 8.5 minutes. This learning problem does not have

any particular goal states such as in the puddle world,

therefore we set the discount rate γ = 0.9. For practical

use, the learning rate is set to somewhat large απ = 0.1.

The other parameters are the same as in the puddle world,

αv = 0.1, λv = 0.9 and λπ = 0.9.

Fig. 14 shows learning curves of accumulated reward,

that is, the distance of the movement from the initial po-

sition. Although the mechanics of the robot A is quite

different from the robot B’s, the proposed algorithm can

learn smoothly in both robots. It is noteworthy that

although the number of all the state-action pairs are

64× 64 = 4092 since state space is 8× 8 = 64 and actions

are 8×8 = 64, the binary-tree approach obtains appropri-

ate behavior with less than the half of 4092 steps. On the

other hand, although the learning algorithms and param-

eters are the same as the binary tree approaches, the flat

action selection approaches cannot learn at all. The dif-

ference of the performance between the binary tree and

flat approaches is outstanding than the performance in

the puddle world.

6. Discussion

Although the learning problem is very simple in the

puddle world, the performance of the flat action-selection

approach is strongly affected with the number of similar

actions. On the other hand, the binary tree approach is

not affected with the number of actions when the actions

are arranged according to similarity. It is noteworthy that

the performance of the random tree approach is the same

or the better than the flat approaches in the case that the

actions are randomly labeled. The reason of this result is

considered that random groups that are not arranged ac-

cording to similarity with using the hierarchical decision

making is still effective in the problems that have many

similar actions. The binary tree approaches will be weak

when an optimum action exists in an action group where

most of the actions have poor action-values. The reason

is that the nodes in higher layers would not choose such

an action group that the average of action value is poor

even if an optimum action exists in that group. However,

such an ill-natured problem is rare in real tasks. Replac-

ing the flat action selection with the binary tree action

selection achieves not only the effective learning but also

to omit parameter tuning that is coming from the number

of actions.

In the real robot problems, the difference of the perfor-

mance between the binary tree and flat approaches is out-

standing. One reason of this result would be that the ac-

tion space is two-dimensional while it is one-dimensional

in the puddle world. The analysis of the relation between

the number of the action dimension and the learning per-

formance is a future work. In this paper, we demonstrate

that the proposed approach works effectively in the en-

vironments where the actions are arranged according to

similarity in only one or two dimensional space. How-

ever, the performance of the hierarchical aproach would

be strongly affected with the assignment of the action di-

mension to the decision layer in higher dimensional action

space. It is possible to arrange independent binary trees

for each action dimension. Finding an appropriate struc-

ture of the binary tree would also be a learning problem

to solve. The design of the binary tree action selector for

high dimensional action space is a future work.

7. Conclusion

We proposed a binary-tree stochastic policy representa-

tion, that is a generalization technique of (or using) action

space for probability of action selection. The efficiency of

our method is owing to the property of the environments

that neighboring actions will almost result in similar state

transitions. The computational expense for selectiong ac-

tion and finding eligibilities is quite little since the agent



T. SICE Vol.E-4 No.1 2007 9

can perform it using only local information. This feature

is advantageous to the implementation for large problems.

Replacing the flat action selection with the binary tree

action selection achieves not only the effective learning

but also to omit parameter tuning that is coming from

the number of actions. The proposed action selector is

a theoretically sound and simple stochastic-policy repre-

sentation. Therefore, it can be applied to all the policy

gradient methods such as actor-critic, REINFORCE, or

VAPS algorithms.
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