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Abstract 
This paper presents an automatic design method for pipe arrangement.  A pipe 
arrangement design problem is proposed for a space in which many pipes and 
objects co-exist.  This problem includes large-scale numerical optimization and 
combinatorial optimization problems, as well as two criteria.  For these reasons, it 
is difficult to optimize the problem using usual optimization techniques such as 
Random Search.  Therefore, a multi-objective genetic algorithm (GAs) suitable for 
this problem is developed. 

A pipe is characterized by both a pattern of generation and numerical parameters.  
The former describes the way the pipe bends and the latter details the length of the 
straight parts.  For this reason, a combination of the pattern of generation and the 
numerical parameters is used for the solution representation and a new method of 
crossover is proposed that takes into account interference with obstacles.  As the 
number of pipes increases, it becomes rapidly more difficult to find feasible 
solutions where pipes do not interfere with each other.  Therefore, two 
modification operators that transform infeasible solution candidates into feasible 
ones are introduced.  One operator modifies the pipe having a lot of interferences 
with other pipes so that it will not interfere with them, and the other is related with 
the operation that modifies the pipe that travels through obstacles. Although there 
are cases in which pipes cannot completely avoid obstacles in practical designs, 
this situation is taken into consideration by this design process. 

The proposed method for optimizing a pipe arrangement efficiently is 
demonstrated through several experiments, and remarks are provided for applying 
this methodology to a practical pipe arrangement design. 
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1.  Introduction 
Recently, the shipbuilding industry has been able to integrate design and 
manufacturing systems due to advances in data processing technology. This 
integration promotes automation and reduces labor requirements, which have 
become necessary due to the lack of skilled workers and the change of the younger 
generation’s work ethic. The design, analysis, and production of a given system can 
all be completed using three-dimensional data by employing CAD (Computer-
Aided Design) software. It is quite difficult to visualize a complex pipe 
arrangement using a two-dimensional blueprint. For this reason, pipe arrangement 
designs have been generated using trial and error methods. Even now, a large part 
of a design relies upon the designer’s experience, because the automation of pipe 
arrangements has not yet been achieved. A reason for this may be the 
underreporting of research on the automatic design of pipe arrangements. 

This paper formulates a pipe arrangement design problem where many pipes co-
exist in a close space and some obstacles must be avoided.  This problem includes 
large-scale numerical optimization and combinatorial optimization problems, and 
has two criteria.  Therefore, it is difficult to optimize the objective using usual 
optimization techniques such as Random Search. 

A multi-objective optimization problem is an important problem that occurs in a lot 
of real problems, and a full optimum solution cannot be obtained (Coello [1], 
Corne [2]).  Therefore, solutions are generated using the concept of the Pareto 
optimum solution, which is a solution that dominates all other solutions for at least 
one criterion.  The genetic algorithm (GA) is an optimization technique that was 
inspired by the evolution process of natural life (Ono [3]).  This method is expected 
to be an effective method for obtaining Pareto solutions efficiently, because the GA 
searches on multimodal search space and finds a set of Pareto solutions by 
explicitly handling plural criteria.  Therefore, multi-objective genetic algorithms 
(GAs) that are suitable for this problem are proposed.  It is demonstrated that the 
proposed method can optimize a pipe arrangement efficiently, and some remarks 
are provided on applying this method to a practical pipe arrangement design. 

2.  Formulating Pipe Arrangement Design Problem 
A pipe arrangement for a space in which many pipes co-exist closely and several 
obstacles exist is formulated in this section.  

2.1  Generating Pipes 
The process of designing a pipe arrangement consists of three parts: 1) designing a 
distribution diagram that shows which equipment connect with other equipment, 2) 
designing an arrangement of the equipment, and 3) designing the route for the 
pipes between equipment.  

In this paper, a pipe arrangement is automatically designed when both origin and 
endpoint coordinates and the directions in which the pipes expand (direction 
vectors) are provided. 
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The objective for the pipe arrangement design is to minimize the total length of 
pipes within the arrangement, in order to improve the economical efficiency, while 
providing a design in which the pipes can be attached easily. Pipe materials are 
specified in JIS (Japanese Industrial Standards), and it is economically desirable to 
use these materials.  When a pipe is squarely bent, the two pipes are welded 
together using a material specified in JIS.  However, when a pipe is bent at an 
arbitrary angle, the pipe is bent with a pressing machine.  Because the pressing 
machine is very time-consuming, pipes are bent squarely unless special conditions 
exist. When pipes need to be bent at arbitrary angles due to the demands of the 
design, this situation is considered using direction vectors.   

There is an infinite number of piping routes that could be used to connect a given 
origin and endpoint. Therefore, a limit is imposed on the degrees-of-freedom for 
the route. A piping route is designed that essentially specifies the bending points 
(nodes).  First, a route is designated as mode-1, mode-2, or mode-3, according to 
number of direction vectors.  Next, a generation pattern is set according to the 
number of nodes and the relative position between the origin and the end-point, as 
shown in Figs. 1, 2, and 3. A pipe is characterized by both a pattern of generation 
and three numerical parameters that describe the length of the straight parts.  It is 
possible to expand the generation pattern number by increasing the number of 
nodes.  However, it is easier to assemble a pipe with a fewer number of nodes, so 
the number of nodes should be minimized while avoiding interference from other 
pipes and obstacles. 

 

 
Fig. 1  Mode-1 
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Fig. 2  Mode-2                                              Fig. 3  Mode-3 

 

2.2  Interference with Other Pipes 
The conditional expression that describes two pipes interfering with each other is 
as follows: 

10 rrd +£                                                     (1) 

where d  is the shortest distance between two pipes, and 0r  and 1r  are the two pipe 
radii. 

However, in a practical design, the size of a material called the flange must be 
considered.  The size of the flange is set according to the diameter of the pipe, and 
must be taken into account when calculating pipe interference. 

2.3  Interference with Obstacles 
Cubes are arranged as the obstacles in this experiment and an obstacle with a 
complicated shape can be modeled by a combination of several cubes. 

Two methods for automatically avoiding obstacles are considered. One method 
involves labeling the pipe infeasible when the pipe interferes with an obstacle, and 
the other method makes the pipe feasible by assigning an evaluation value when a 
pipe interferes with an obstacle.  In a practical pipe arrangement design, a space is 
occasionally set aside to allow for maintenance people to pass.  This space is then 
considered as an obstacle in the design.  In such a case, it is necessary for pipes to 
avoid the obstacle as much as possible, although pipes need not completely avoid 
the obstacle.  For this purpose, the latter method of making the pipe feasible by 
assigning an evaluation value is adopted. 
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[The evaluation function for obstacle] 

The evaluation function for an obstacle is shown in Equation (2). In this equation, 
that evaluation values are worse when a pipe passes through the center of an 
obstacle and the length of the intersection is long. 
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Here, k  is the index of each pipe, l  is the index of each obstacle, on  is the number 
of obstacles, pn  is the number of pipes, klb  is the length of the intersection when a 
pipe with index k  intersects an obstacle with index l , kla  is the averaged length 
between the center of the gravity of the obstacle with index l  and the part divided 
by each node of the pipe with index k , and lA  is the length between the center of 
the gravity and the top of  the obstacle with index l . 

If all of the pipes avoid all of the obstacles, the evaluation value is 0.  Fig. 4 shows 
an example of calculating the evaluation function. 

                  
Fig. 4  An example of calculating of the evaluation function for an obstacle 

 

3.  Designing Multi-objective GAs 
This section first provides a brief explanation of GAs.  Then, a multi-objective GA 
is proposed for which the GA optimization technique will be applied to solve the 
multi-objective optimization problem. Finally, the effectiveness of the proposed 
method is verified through some experiments.   

3.1  Genetic Algorithms (GAs) 
The genetic algorithm (GA) is an optimization technique inspired by the evolution 
process of natural life.  The GA consists of a very flexible framework that recently 
has been applied to not only global optimization problems, but also to multi-
objective optimization methods in various fields.  The general algorithm is 
described as follows: 
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1.  Generation of Initial Population 

Generate an initial population that consists of plural individuals, called solution 
candidates, generated at random.  Let the initial population be the current 
population. 

2.  Selection for Reproduction 

Choose pairs of individuals from the current population. 

3.  Generation of Children 

Apply a crossover and a mutation to the pairs of individuals selected in Step 2 to 
produce new children, called new solution candidates. 

4.  Selection for Survival 

Select individuals from the children generated in Step 3 and the individuals in the 
current population to produce the next population.  Let the next population be the 
current population. 

5.  Repeat the previous Steps 2 to 4 until a certain stop condition is satisfied. 

The process of designing a GA consists of two parts: 1) designing a representation, 
a crossover operator and a mutation operator, and 2) designing a generation-
alternation model.  When designing a representation, a crossover operator, and a 
mutation operator, it must be determined how a solution will be represented on the 
computer and how to generate a new solution from two or more solutions.  The 
performance of GAs heavily depends on the representation, crossover operator, and 
mutation operator.  It is important to consider characteristics of the problem 
domain when designing a representation, crossover operator, and mutation operator.  
In the generation-alternation model design, the method for choosing pairs of 
parents for generating children by crossover and mutation and the method for 
selecting individuals for survive into the next generation must be determined.  The 
generation-alternation model allows the GA to search multimodal search space 
effectively and to find a set of non-dominated solutions in a single run by explicitly 
handling plural criteria.   

3.2  Designing Representation and Crossover 
The representation and crossover that are traditionally used for function 
optimization are Binary cording or Gray cording that are defined on a bit string and 
a one-point crossover, a two-point crossover, and a uniform crossover.  Recently, 
various real-coded genetic algorithms have been proposed in which the phase of 
the phenotype place is corresponds to the phase of the genotype place (Ono [4]). 
Unfortunately, it is difficult to apply the traditional representation and crossover to 
the current problem because it contains both numerical optimization and 
combinatorial optimization problems.  Therefore, a representation and crossover 
suitable for this problem are developed. 

Instead, a combination of both a pattern of generation and numerical parameters are 
used as the representation, and is called the generation gene. 
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A Crossover with Two Genes (XTG) is proposed as the crossover for this problem.  
The XTG generates one child from two parents using a gene named the obstacle 
gene, which contains the obstacle interference information, as shown in Fig. 5.  The 
child generation gene is basically to be the same one as either of the two parents or 
generated at random using obstacle gene assisting.  The outline of XTG is 
described as follows: 

1.  In the case that both parents avoid obstacles, the generation gene for the child is 
the same one as either of the two parents. 

2.  In the case that only one parent avoids obstacles, the generation gene for the 
child is same as that parent. 

3.  In the case that both parents interfere with obstacles, the generation gene for the 
child is generated at random. 

To demonstrate the effectiveness of the XTG, a crossover based on a uniform 
crossover (UX), which is a traditional crossover, is also designed.  The UX 
generates one child from two parents, as shown Fig. 6.  The generation gene for the 
child of each pipe is the same one as either of its parents with an equal probability 
of being chosen.  

 

 
Fig. 5  An example of the Crossover with Two Genes (XTG) 

 
Fig. 6  An example of the Uniform Crossover (UX) 

3.3  Designing Mutation 
The designed mutation shown in Fig. 7.  The mutation is applied to each generation 
gene at a constant probability (mutation rate).  The gene to which the mutation is 
applied is regenerated at random.  
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Fig. 7  An example of the mutation 

3.4  Designing Generation Alternation Model 
A generation alternation model based on the Pareto optimal selection strategy, as 
shown in Fig. 8 (Kobayashi [5]), is employed.  

The outline of the model is as follows. First, a pair of parents is selected randomly 
from the population of the current generation. Next, children are generated by 
applying a crossover or a mutation operator to the parents n times. Non-dominated 
individuals from the children and the current population are then selected, and 
these individuals become the population of the next generation.  A non-dominated 
individual is a solution that is superior to all other solutions in at least one criterion.  
The generation alternation model using this strategy can explicitly optimize plural 
criteria without setting a trade-off ratio among the plural criteria. 

  
Fig. 8  Generation alternation model 

3.5 Designing Modification  

In this paper, a solution candidate is regarded as infeasible when pipes interfere 
with each other.  When initial solution candidates are generated, the probability of 
pipes avoiding interference with each other rapidly decreases as the number of 
pipes increases because the ratio of occupied space increases.  In the search phases, 
new solution candidates created by a crossover and a mutation operator have a low 
probability of feasibility because the crossover and mutation operators generally do 
not take into account pipe interference.  

To overcome this problem, a Modification Operator on Contact (MOC) is proposed 
that makes infeasible solution candidates feasible as a modification operator, which 
changes the properties of the original solution candidates as little as possible. 
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3.5.1  Basic Concepts 
The number of interferences with other pipes is counted and solutions that have a 
lot of interferences are modified so that pipes that do not interfere with each other.  
If at least one pipe interferes with other pipes, this modification is repeated until no 
pipes interfere with each other. 

3.5.2  Algorithm of the MOC 
The proposed algorithm for modifying a solution candidate is described below. 

1.  Rank the pipes in order of the most number of interferences. 

2.  Restructure the pipe with the most interferences at random using the following 
process: 

(a) In the case that all pipes do not interfere with each other, it ends. 

      (b) In the case that at least one pipe interferes with other pipes, the process is as 
follows: 

( i ) In the case that the same one as the restructured pipe appears a  times 
consecutively, go to Step 3. 

 ( ii ) Otherwise, go to Step 1. 

3.  Restructure both the pipe with the most interferences and the pipe with the 
second-most interferences at random using the following process: 

(a) In the case all pipes do not interfere with each other, it ends. 

      (b) In the case that at least one pipe interferes with other pipes, the process is as 
follows: 

 ( i ) In the case that the same ones as the two restructured pipes appear a  
times consecutively, go to Step 4. 

 ( ii ) Otherwise, go to Step 1. 

4.  In the same way, repeat to the last pipe, the pipe with the fewest interferences 
with other pipes. 

In this algorithm, a  is the slip number.  a  is a constant that is set by the designer 
according to the specific problem. 

3.5.3  How to use the MOC 
The modification operator is used not only when generating an initial population, 
but also when applying a crossover and a mutation operator. 

3.5.4  Effectiveness of the MOC 
The MOC was applied to the pipe arrangement design problem shown in Table 1 in 
Section 3.6 to confirm its effectiveness.  a  was set to 10 and the XTG was used as 
the crossover operator.  Figs. 9 (a) and 9(b) display the distribution charts that 
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show plots of the change of evaluation values after applying the MOC to an 
infeasible solution candidate 100 times.   

The evaluation values are distributed in the upper right quadrant in both figures 
after the MOC is applied, denoting a bad evaluation score. This occurs because the 
XTG generates children to improve the evaluation value for an obstacle without 
considering pipe interferences. Moreover, only a few pipes were restructured 
because the evaluation value for pipe length did not change discretely.  

    
(a) Example 1                                             (b) Example 2 

Fig. 9  Change of the evaluation value after applying the MOC 

3.6  Experiments and Results 
To confirm the effectiveness of the proposed method, it was applied to the pipe 
arrangement design problem shown in Table.1.  In the pilot experiment, the initial 
number of generating solution candidates was set to 100, the number of crossovers 
was set at 100, the mutation rate was set at 0.1, and the a  value of the MOC was 
set at 10.   

Table 1 Problem specification 

 Mode-1 mode-2 mode-3 
The number of pipes 5 7 3 

The number of variables 3 2 1 
The number of combinations 14 6 2 
The total number of variables 15 14 3 

The total number of combinations 537,824 279,936 8 
The number of all variables 32 

The number of all combinations 1,204,450,394,000 

Space where pipes arranged:  ( ){ }100,100,100|,, ££££££ zyxzyx  

Space where obstacle exists:  ( ){ }82,82,82|,, ££££££ zyxzyx  

Figs. 10, 11, 12 show the first Pareto solutions, the Pareto solutions for the 100th 
generation, and the Pareto solutions for 1000th generation, respectively.  Using the 
XTG as a crossover, a solution with no obstacle interference was found in the 
100th generation. These evaluation values can be considered settled because the 
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improvement to these values is little in the 1000th generation. However, when UX 
is used as a crossover, a solution without interferences was not found, even in the 
1000th generation.  Fig. 13 shows the solution for an evaluation value of 0 when 
XTG was used in Fig. 12.  The cube at the center of the figure represents the 
obstacle.  This figure indicates that a pipe arrangement without interferences was 
found even though pipes co-exist in a small space. 

 
Fig.10  First Pareto solutions                     Fig.11  Pareto solutions  

in the 100th generation 

                      

 
Fig.12  Pareto solutions                            Fig.13  Result of 15 pipes arranged 

in the 1000th generation 

4.  Designing Modification Operator improving                   
the evaluation value for obstacle 

In this section, a Modification Operator on Obstacle (MOO) is designed to improve 
the evaluation value for obstacle.  The effectiveness of the MOO is verified by 
applying it to the problem shown in Table 1 in Section 3.6. 

4.1  Basic Concepts 
A solution candidate that interferes with obstacles is modified by restructuring all 
of the pipes that interfere with obstacles.  However, the regenerated solution 
candidate might be infeasible.  Therefore, the MOC that makes an infeasible 
solution candidate feasible is used as well. 
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4.2  Algorithm of the MOO 
The proposed algorithm for modifying a solution candidate is described as follows: 

1.  Apply the MOC to the infeasible solution candidate. 

      (a) In the case all pipes do not interfere with all obstacles, it ends. 

      (b) Otherwise, go to Step 2. 

2.  Restructure all pipes that interfere with obstacles. 

      (a) In the case all pipes do not interfere with all obstacles, go to Step 3. 

      (b) Otherwise, this step is repeated b  times.  Once this step is repeated b  
times, go to Step 3. 

3.  Repeat Steps 1 and 2 g  times.  Once these steps are repeated g  times, apply the 
MOC to the solution candidate and it ends. 

In this algorithm, b  and g  are the avoidance number and the modification number, 
respectively.  b  and g  are constants that a designer should set according to the 
specific problem.   

4.3  How to use the MOO 
As well as the MOC, the MOO is used not only when generating an initial 
population, but also when applying a crossover and a mutation operator. 

4.4  Effectiveness of the MOO 
To confirm the effectiveness of the MOO, it was applied to the pipe arrangement 
design problem shown in Table 1 in Section 3.6.  In this pilot experiment, the 
initial number of generating solution candidates was set to 20, the number of 
crossovers was set to 20, the mutation rate was set to 0.1, and b  and g  of the 
MOO were set to 100 and 100, respectively.   

Figs. 14 and 15 display the first Pareto solutions and Pareto solutions for the 100th 
generation, respectively.  A solution with no interference with the obstacle was 
found in the first generation in the effect of the MOO, as shown in Fig.14.  The 
evaluation value is almost the same whether XTG or UX was used as the crossover 
because the MOO restructures more pipes than the MOC and the MOO changes the 
properties of the original solution candidate more than the MOC. The time required 
to calculate the 100th generation using the MOO was almost the same as the time 
required to calculate the 1000th generation using the MOC.  When the evaluation 
values for length are compared, the values using the MOC were better.   
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Fig.14  First Pareto solutions with MOO   Fig.15  Pareto solutions  

in the 100th generation with MOO 

4.5 Parameters of modification operators 
[The slip number: a ] 

a  is related to the number of pipes because it is used in conjunction with the MOC 
that make infeasible solution candidates feasible.  Although it is desirable to have 
as large a value of a  as possible that does not change the properties of the original 
solution candidate, a feasible solution might not be able to be generated easily. 

[The avoidance number: b ] 

b  is not related to the number of pipes, because it is used in conjunction with the 
MOO and it is related only to each pipe.  This value depends on the size and the 
arrangement of the obstacle. If the value of b  is too large, the probability of a 
useless search might increase because a pipe might not be able to completely avoid 
obstacles using the given pipe origin and endpoint coordinates. 

[The modification number: g ] 

g  is related to not only the number of pipes but also the size and the location of  an 
obstacle because it is used to prevent pipes from interfering with each other and 
from interfering with obstacles. As with b , if the value of g  is too large, the 
probability of a useless search might increase. 

Each parameter is highly dependent upon the given problem because they are 
related to not only the number of pipes but also to the diameter and coordinates of 
pipe origin and endpoints.  Therefore, each parameter should be experimentally 
determined. 

5.  Conclusion 
In this paper, a design problem for pipe arrangement in a small space where many 
pipes and obstacles co-exist was formulated. This problem includes large-scale 
numerical optimization and combinatorial optimization problems and two criteria. 
For these reasons, it was difficult to optimize the objective using usual optimization 
techniques such as Random Search. Therefore, the representation, crossover 
operator, mutation operator, and modification operator were introduced to 
transform infeasible solution candidates into feasible ones, and a multi-objective 
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Genetic Algorithm suitable for this problem was developed.  The effectiveness of 
the proposed method was verified through several experiments.  Moreover, another 
modification operator was proposed to improve the evaluation value for obstacle, 
and its effectiveness was demonstrated. 

In the future, the work efficiency for installing a pipe should be considered, and the 
design should be integrated with the production process.  Moreover, the total space 
in which the pipes is arranged should be minimized by searching for coordinates of 
origin and endpoints, although the origin and endpoint coordinates and the 
directions in which the pipes expand (direction vectors) are currently given.  
Because the search time increases as the number of pipes increases, improvements 
to the proposed algorithms should be continued. 
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