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Abstract

This paper presents a new approach to rein-
forcement learning (RL) to solve a non-linear
control problem eÆciently in which state and
action spaces are continuous. In real-world
applications, an approach combining discrete
RL methods with linear controllers is promis-
ing since there are many non-linear control
problems that can be decomposed into sev-
eral local linear-control tasks. We provide
a hierarchical RL algorithm composed of lo-
cal linear controllers and Q-learning, which
are both very simple. The continuous state-
action space is discretized into an array of
coarse boxes, and each box has its own lo-
cal linear controller as an abstract action.
The higher-level of the hierarchy is a con-
ventional discrete RL algorithm that chooses
the abstract actions. Each linear controller
improves the local control policy by using an
actor-critic method. The coarse state-space
discretization is a quite simple way to cope
with the curse of dimensionality, but often
gives rise to non-Markovian e�ects. In our
approach, the local linear controllers make
up for these undesirable e�ects. The algo-
rithm was applied to a simulation of a cart-
pole swing-up problem, and feasible solutions
are found in less time than those of conven-
tional discrete RL methods.

1 Introduction

Many DP-based reinforcement learning (RL) algo-
rithms approximate the value function and give a
greedy policy with respect to the learned value
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function. Theoretical results guarantee that sev-
eral DP-based algorithms will �nd optimal poli-
cies (e.g. [Watkins et.al 92], [Jaakkola et al. 93],
[Tsitsiklis et al. 97], etc.) and a great deal of ef-
fort has been made on the techniques to approximate
value functions (e.g., CMAC, Neural-Net [Lin 93]).
However, it is too expensive to �t highly accurate
value functions, particularly in continuous state-action
spaces. To overcome this problem, several tech-
niques are proposed (e.g., Parti-game [Moore 95],
Coarse grids +environment models +search tech-
niques [Davies et al. 98], interpolation on a coarse grid
[Davies 96]). On the other hand, it is shown that
a local gradient-ascent search over stochastic policy-
space is possible without explicitly computing value or
gradient estimates [Williams 92], [Kimura et al. 95],
[Kimura et al. 98]. That is to say, the DP-based RL
methods have features of a global search in terms of
optimality and computational expense, and the gradi-
ent RL methods have a feature of a local search. This
paper presents a new model-free approach that bridges
a gap between DP-based methods and local gradient-
ascent methods.

In real-world applications, an approach combining dis-
crete RL methods with linear controllers is promis-
ing since there are many non-linear control problems
that can be decomposed into several local linear con-
trol tasks. Based on this principle, we provide a new
algorithm with the key ideas including:

� A hierarchical RLmethod composed of Q-learning
and local linear controllers, which are both very
simple.

� Generalization techniques for continuous state-
action spaces: coarse discretization for the high-
level of the hierarchy, and local continuous-vector
representation for the low-level linear controllers.

� A policy improvement algorithm for the local lin-
ear controllers with imperfect value functions.

The coarse state-space quantization is a quite simple



way to cope with the curse of dimensionality. But
in many cases, it often gives rise to undesirable non-
Markovian e�ects. In our approach, local linear con-
trollers, which use a continuous-vector for the local
state representation, make up for these e�ects.

Although hierarchical algorithms can often yield
sub-optimal solutions, there are signi�cant bene�ts
in learning eÆciency, search space, and re-use of
knowledge [Singh 92], [Kaelbling 93], [Dietterich98],
[Sutton et al. 98], [Parr et al. 98]. In general, the low-
level of the hierarchy is composed of learning control
modules that represent subtasks or abstract actions.
Each subtask is de�ned in terms of termination con-
ditions, and the low-level module is to �nd a local
optimal policy. The RL techniques for discrete semi-
Markov decision processes (SMDPs) would be applied
to learning of the high-level module that selects a low-
level modules as abstract action. In our approach, the
low-level modules correspond to linear controllers.

Actor-critic methods [Barto et al. 83] are often used
for learning on the linear controllers [Gullapalli 92],
[Doya 96]. Generic actor-critic methods can be classi-
�ed into a local gradient-ascent method with respect
to policy space by using learned value functions. But
in our hierarchy, the linear controllers cannot hold ac-
curate value functions on account of practical limita-
tions on the computational resources. Fortunately, it
is shown that an actor-critic algorithm using eligibil-
ity traces in the actor can improve its stochastic policy
even though the estimated value function is inaccurate
[Kimura et al. 98]. We take advantage of this method
for the local policy improvement.

This paper is structured as follows. First, we re-
view the basic notion of RL and control problems in
continuous state dynamic systems. In Section 3 we
introduce the generalization techniques for continu-
ous state-action spaces and the hierarchical algorithm
combining Q-learning with linear controllers. Section
4 presents behavior of the algorithm through simula-
tions of a cart-pole swing-up task. In Section 5, we
summarize the paper and discuss some directions of
combining other methods for future work.

2 Problem Formulation

2.1 Markov Decision Processes

At each discrete time t, the agent observes xt contain-
ing information about its current state, select action
at, and then receives an instantaneous reward rt re-
sulting from state transition in the environment. In
general, the reward and the next state may be ran-
dom, but their probability distributions are assumed
to depend only on xt and at in Markov decision pro-
cesses (MDPs), in which many reinforcement learning

algorithms are studied. In MDPs, the next state y
is chosen according to the transition probability paxy,
and the reward is given randomly according to the ex-
pectation rax. but the agent does not know paxy and rax
ahead of time. The objective of reinforcement learning
is to construct a policy that maximizes the agent's per-
formance. A natural performance measure for in�nite
horizon tasks is the cumulative discounted reward:

Vt =

1X
k=0


k rt+k , (1)

where the discount factor, 0 � 
 < 1 speci�es the
importance of future rewards, and Vt is the value on
time t. In MDPs, the value can be de�ned as:

V �(x) = E�

"
1X
k=0


k rkjx0 = x

#
, (2)

where E� denotes the expectation assuming the agent
always uses stationary policy �. The objective in
MDPs is to �nd an optimal policy that maximizes the
value of each state x de�ned by Equation 2. In MDPs,
The optimal value of taking action a in state x, de-
noted Q�(x; a), satis�es the Bellman equations for all
x and a:

Q�(x; a) = rax + 

X
y

paxymax
a0

Q�(y; a0) (3)

2.2 A Non-Linear Control Problem

We are given learning control of non-linear dynamic
systems in which :

� State and action spaces are continuous and mul-
tidimensional.

� The task could be decomposed into several local
linear or bang-bang control tasks.

� The agent does not know dynamics of the envi-
ronment ahead of time.

Throughout the paper, we use a cart-pole swing-up
task for the example.

3 Combining Q-learning with Local

Linear Controllers

3.1 Hierarchical Decomposition

In our approach, the agent adopts hierarchical state
representation. The higher-level of the hierarchy uses
discrete representation of the state variables by coarse
quantization. Representative points are situated at the
center of the grid's boxes. Each box has its own lo-
cal linear controllers as discrete abstract actions, that



is, the controllers in a particular box are di�erently
initialized.

Assume that given a n-dimensional state input
(x1; x2; � � �xn) and the corresponding box (Bi) with
the representative point at (bi1; b

i
2; � � �b

i
n), then the low-

level linear controller gets a local continuous input

C = (c1; c2 � � � cn) = (x1�b
i
1; x2�b

i
2; � � � ; xn�b

i
n) . (4)

Figure 1 shows an example of the state representation
in which the state space is two-dimensional.
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State Input  (X1, X2)

Discrete State = B2

Vector  C
Linear controller uses  
               this vector.

Figure 1: An example of the hierarchical state rep-
resentation in a 2-dimensional task. Small circles at
the center of the grid's boxes denote its representative
points.

3.2 Event-driven Decision Making

In dynamic control, an optimal policy often selects the
same action (or holds similar continuous action) for a
certain period of time. Then, uniform regions are likely
to exist in the state space where all of the states have
the same (or similar) optimal action. In our approach,
the coarse grids approximate the uniform regions. The
high-level decision maker selects abstract action each
time when the continuous state input is going across
the boundary of the box, or a certain period of time
passes. This model of abstract action can be seen as
an extension of Markov options [Sutton et al. 98] in
which the policy is given by linear control and the
termination condition is given by the boundary of the
box.

Figure 2 helps to de�ne the big-steps that the high-
level learner takes. If all the linear controllers hold
stationary policy, the high-level learner is to solve a
semi-Markov decision problem.

When a linear controller (option) o is taken, then prim-
itive actions are selected according to its linear control
rule �o until the next decision making occurs on the
high-level hierarchy. In this paper, we will use the fol-
lowing notation based on [Sutton et al. 98]. Let �o(x)

X1

X2

0

B1

B3

B2

B4

Decision Making

State Transition

Figure 2: The big-steps on the high-level learner. This
modeling is closely related to semi-Markov decision
processes (SMDPs). The high-level decisions are only
allowed at events which occur whenever the state tran-
sition goes across the boundary of the box, or a certain
period of time passes.

be the primitive action taken in state x according to
o. Assume that current o terminates at next time step
according to the probability T (x; a), where a = �o(x).
Then, we can de�ne the optimal option-value function
recursively by

Q�(x; o) = rax + 
(1 � T (x; a))

 X
y

paxyQ
�(y; o)

!

+
T (x; a)

 X
y

paxymax
o0

Q�(y; o0)

!
;(5)

where a = �o(x). If all states x, y are discrete and
�o is stationary, then Equation 5 can be solved by
Intra-Option value learning [Sutton et al. 98]. Unfor-
tunately, the state spaces are continuous and it is too
expensive to learn the accurate value function. In the
next section, we will present a new method that uses
Q-values averaged in the coarse regions.

3.3 A Learning Algorithm

Figure 3 gives an overview of the hierarchical algo-
rithm. The high-level decision maker accumulates Q-
values using tables with one entry for each box-option
pair. In this case, each box-option value (or box value)
Q(Bi; o) and V (Bi) represent approximation of aver-
aged values weighted by the visiting frequency over
the coarse regions, i.e., V (Bi) '

P
x2Bi

U�(x)V �(x),

and Q(Bi; o) '
P

x2Bi
U�(x)Q�(x; o), where Bi de-

notes the box, U o(x) denotes the probability of occu-
pying state x under the policy �. The learner also
accumulates state value V (Bi). Unfortunately, this
value function does not satisfy Bellman equations in



State Input
High-level 
Decision Maker

Q-learning, TD(0)

Linear Controllers BxO

Bi, oj
V(Bi)
Local Vector

Actor-Critic

Primitive
Action

Agent

B1,o1

B2,o1

Bn,o3

B1,o3

Bn,o1

B1,o2

Bi, oj

Selected

Reward

Figure 3: The hierarchical structure of the algorithm. B1; B2; � � �Bi � � �Bn denote the state boxes, and every
small rectangle labeled \B

�
; o
�
" denotes a linear controller. In this �gure, a particular box Bi has three controllers

which are di�erently initialized.

the strict sense. However, we try to provide a good
approximation algorithm.

Assume that the agent selects ot at time t in the region
B(t) and makes next decision at time t+ k + 1 in the
region B(t + k + 1). Then we approximate values at
each time by:

EfV �
t g ' Efrt + 
rt+1 + 
2rt+2 � � �+ 
krt+kg

+
k+1V (B(t + k + 1)),

EfV �
t+1g ' Efrt+1 + 
rt+2 + 
2rt+3 � � �+ 
k�1rt+kg

+
kV (B(t + k + 1)),

...

EfV �
t+kg ' Efrt+kg+ 
V (B(t + k + 1)).

We approximate the value of the box Bi according to
averaging these values:

V (Bi) =
1

k + 1

�
V �
t + V �

t+1 � � �+ V �
t+k

�
. (6)

Then, the TD-error for V (B) in the high-level module
is given by

TD-error =
1

k + 1

0
@ kX

i=0

rt+i

iX
j=0


j

1
A

+
1

k + 1

 
kX
i=0


i+1

!
V (B(t + k + 1)) � V (B(t)) .

(7)

This result leads us to the learning algorithm for the
high-level module.

A Learning Method for High-Level Module:

To estimate box values, the algorithm updates by

V (B(t))  V (B(t)) + �v (TD-error) , (8)

where �v is a learning coeÆcient, and TD-error is given
by (7). Similarly, the box-option value is updated by

Q(B(t); ot) Q(B(t); ot)

+ �v

h 1

k + 1

0
@ kX

i=0

rt+i

iX
j=0


j

1
A

+
1

k + 1

 
kX
i=0


i+1

!
max
o0

Q(B(t + k + 1); o0)

� Q(B(t); ot)
i
. (9)

Although this algorithm is ad hoc, it works very well
for two reasons:

1. Policies that are greedy for Q-functions are op-
timal if the Q-functions are a certain degree of
approximation [Singh et al. 94], [Heger 96].

2. In our approach, learning in the linear controllers
makes up for undesirable e�ects.

A Learning Method for Linear Controllers:

The high-level decision maker selects one of B �
O linear controllers according to some exploration
strategy, where B denotes the number of the state
boxes, O is the number of possible options per each
box. When the state input vector is n-dimensional,
the linear controllers have n + 1 parameters W =
(w1; w2; � � �wn+1) per dimension of the output vector.
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Figure 4: An instanceof the linear controller. gi de-
notes a feedback gain which is characterized by wi ac-
cording to gi = wi + N (0; �2). The controller learns
wi to achieve good control.

The controllers learn W to make good control. A lin-
ear controller o determines its state feedback-gain pa-
rameters (g1; g2; � � �gn+1) as to the control rule �o by
using W , . After that, primitive actions are selected
according to �o until the termination of the option.
The linear controllers adopt an actor-critic architec-
ture to learn feedback-gain parameters. The actor-
critic provides continuous action as the feedback-gain,
and makes use of V (Bi) for the critic. The output of
the critic is too coarse to calculate value gradient from
the learned value function, because the approximation
function V (Bi) is 
at in the same state region. There-
fore we adopt a slightly modi�ed actor-critic algorithm
using eligibility traces in the actor [Kimura et al. 98],
that can improve its policy even though the estimated
value function is inaccurate.

Figure 4 shows an instance of the actor-critic algo-
rithm in which the action is of one dimension. In the
beginning of the option, the actor selects its feedback-
gain parameters (g1; g2; � � �gn+1) according to gi =
wi +N (0; �2) for all i = 1; 2; � � �n+ 1, where N (0; �2)
denotes the normal distribution. At each time step
t < t + i � t + k, primitive actions are selected until
the termination of the option according to

a = c1g1 + c2g2 + � � �+ cngn + gn+1 , (10)

where C = (c1; c2; � � �cn) is the local continuous vector
at the time t + i as shown in Equation 4. When the
option terminates at time t+k+1 in the region B(t+
k + 1), all linear controllers updates according to

Tracei  Tracei + (gi �wi)

wi  wi + �ac (TD-error)Tracei

Tracei  
1

k + 1
(

kX
j=0


j+1)Tracei

,where Tracei denotes an eligibility trace on wi, and
�ac is a coeÆcient of learning. TD-error is shown
in Equation 7. The eligibility of wi corresponds to
(gi�wi) that is similar to Gaussian unit [Williams 92]
and Gullapalli's neural reinforcement learning unit for
continuous action [Gullapalli 92].

Initial feedback-gain parameters are all set to zero, ex-
cept that the linear controllers in the same state region
have di�erent initial o�sets of the primitive actions,
i.e., every wn+1 are di�erent. Owing to this initializ-
ing, the agent can execute various actions even if the
linear controllers do not move the parameters at all.

4 Applying to a Cart-Pole Swing-Up

Task

The behavior of this algorithm is demonstrated
through a computer simulation of a cart-pole swing-
up task. We modi�ed the cart-pole problem described
in [Barto et al. 83] so that the action is taken to be
continuous.
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Figure 5: A simulation model of the cart-pole task.

4.1 Details of the Cart-Pole Simulation

The dynamics are modeled by

�� =
g sin � + cos �

�
�F�m` _�2 sin �+�csgn( _x)

M+m

�
�

�p _�

m`

`
�
4
3
� m cos2 �

M+m

� ,

�x =
F +m`

�
_�2 sin � � �� cos �

�
� �csgn( _x)

M +m
,

where M = 1:0(kg) denotes mass of the cart, m =
0:1(kg) is mass of the pole, 2` = 1(m) is the length of
the pole, g = 9:8(m=sec2) is the acceleration of grav-
ity, F (N) denotes the force applied to cart's center of
mass, �c = 0:05 and �p = 0:01 are coeÆcient of fric-
tion of the pole and the cart respectively. In this sim-
ulation, we use discrete-time system to approximate
these equations, where �t = 0:02sec. At each discrete
time step, the agent observes (x; _x; �; _�), and controls
the force F . The agent can execute action in arbitrary
range, but the possible action in the cart-pole system
is constrained to lie in the range [�10; 10](N ). When
the agent chooses an action which does not lie in that



range, the action F is saturated. The system begins
with (x; _x; �; _�) = (0; 0; 3:0; 0). When the cart collides
with the end of the track (�3:0 � x � 3:0), the cart re-
bounds from the bumper with a coeÆcient of rebound
0:2. The agent receives a reward (penalty) signal of
(a) �1 when the pole falls over �0:8� (rad),
(b) �4 when the cart bounces at the end of the track,

(c) �3 when _� < �10 or 10 < _� (rad/sec),

(d) +1 when �0:133� < 0:133� and �2 < _� < 2
(rad/sec).

Note that the domain shown here di�ers from tradi-
tional cart-pole tasks in that the environment has no
termination condition.

4.2 Implementation

In this experiment, the state space is normalized as
(x; _x; �; _�) = (�3:0 m;�10 m/sec;
�� rad;�10 rad/sec) into (�0:5;�0:5;�0:5;�0:5).
The agent discretizes the normalized state space evenly
into 3� 3� 5� 5 = 225 or 3� 3� 6� 6 = 324 boxes,
and attempts to store in each box V (Bi) and Q(Bi; o).
Each linear controller accumulates �ve feedback-gain
parameters w1; w2; � � �w5, for the continuous-state in-
put is 4-dimensional. On each state box, the high-level
decision maker selects one of 3 (or 4) options. When
3 options are within the box, the initial parameters
are set to w5 = �1=3, w5 = 0, w5 = 1=3 respectively.
When 4 options are within the box, the initial param-
eters are set to w5 = �3=8, w5 = �1=8, w5 = 1=8,
w5 = 3=8 respectively. In the linear controllers, an
action a is generated by Equation 10, where the nor-
mal distribution follows � = 0:5. Then the force F is
executed according to F = a� 20.

The high-level hierarchy makes decision each time
when the continuous state input moves to a di�erent
box or the state input keeps within the same box for 2
seconds (100 steps). It uses �-greedy exploration strat-
egy, that is, choosing greedy options with probability
0:99k, where k is the period of time steps on the pre-
vious option. The learning rate �v is set to 0:3 in
3x3x6x6 boxes or to 0:1 in 3x3x5x5 boxes. The learn-
ing coeÆcient of the actor-critic is set to �ac = 0:01.
The discount rate is set to 
 = 0:98.

4.3 Simulation Results

Figure 6, 9, 12, and 15 show the on-line performance
with using di�erent grids and di�erent number of ab-
stract actions. The performance measure is the occu-
pancy rate of the current state in which the system
gives positive reward. The rate is calculated by us-
ing 20 independent runs. The results show that the
proposed methods achieved learning to gain positive
rewards. However, Q-learning-only methods in which

linear controllers do not learn (i.e., �ac = 0) couldn't
learn it at all. It is clear that learning on linear con-
trollers has these e�ects. The increase of the perfor-
mance with 3 � 3 � 5 � 5 boxes is better than with
3 � 3 � 6 � 6 boxes. One reason for this is an ef-
fect of decreasing the number of boxes by the coarse
discretization. The other is that the location of the
boundaries of the boxes �ts for this task fortuitously.
Since the agents retained the exploration strategy for
all learning steps, the performance could not approach
to one. Figure 7, 10, 13 and 16 show examples of
trajectories on learned greedy policies after 7,200,000
steps (40 hours on simulation time). The policies were
feasible, but no agent could obtain optimal swing-up
behavior. The reason is that the growth of swing-up
behavior is slowed down for decreasing in opportunity
of swing-up, because the agent makes progress in keep-
ing the pole vertical.

Figure 8, 11, 14 and 17 show the corresponding state-
action 
ow respectively. The behavior seems to be
a mixture of bang-bang control and linear control.
Around � = 0, we should notice that a bang-bang con-
trol rule was found by the algorithms with 3�3�6�6
boxes whereas a linear control rule was found by the
algorithms with 3 � 3 � 5 � 5 boxes. Anyway, the
algorithm founds preferable solutions.

Figure 18 and 19 show the on-line performance of
conventional Q-learning using 3x3x10x5 and 3x3x12x6
boxes, which are just twice the boxes. The perfor-
mance is slightly better than that of Q-learning only
in Figure 6, 9, 6 and 9, but they could not learn the
control to keep the pole standing. The results show
that the task is not trivial.

5 Discussion

Evaluation: We cannot conclude superiority of the
proposed method, because the complexity of our ap-
proach is obviously larger than that of conventional
Q-learning in the experiment. The experiment shows
that the learning of the local linear controllers can
make up for lack of control ability in the high-level
decision maker.

E�ects of the Partitioning Location: In our test
cases, di�erent discretizations led the algorithms to
learning quite di�erent control rules, especially around
� = 0. These things make it clear that the shape and
location of the quantized regions have great e�ects on
the performance. Joint use of variable-grid methods
(e.g. parti-game [Moore 95]), would be needed for gen-
erating discrete representation rather than the use of
the �xed grid.

Time Intervals of High-level Decision Making:

In our approach, time intervals of decision making on
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Figure 6: On-line performance using 3x3x6x6 grids
and 4 abstract actions.

Figure 7: An example of swing-up behavior on
3x3x6x6 grids and 4 actions.
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Figure 8: Detail of the behavior.
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Figure 9: On-line performance using 3x3x6x6 grids
and 3 abstract actions.

Figure 10: An example of swing-up behavior on
3x3x6x6 grids and 3 actions.
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Figure 11: Detail of the behavior.
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Figure 12: On-line performance using 3x3x5x5 grids
and 4 abstract actions.

Figure 13: An example of swing-up behavior on
3x3x5x5 grids and 4 actions.
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Figure 14: Detail of the behavior.
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Figure 15: On-line performance using 3x3x5x5 grids
and 3 abstract actions.

Figure 16: An example of swing-up behavior on
3x3x5x5 grids and 3 actions
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Figure 17: Detail of the behavior.
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Figure 18: On-line performance of conventional Q-
learning using 3x3x10x5 grids and 3 (or 4) abstract
actions. It is just twice as many as the boxes in Fig-
ure 12 and 15.
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Figure 19: On-line performance of conventional Q-
learning using 3x3x12x6 grids and 3 (or 4) abstract
actions. It is just twice as many as the boxes in Fig-
ure 6 and 9.

the high-level hierarchy are mostly owing to the size of
the state boxes. It can be seen as an adaptive choice of
time intervals in continuous-time domains [Pareigis 98]
[Buckland et al. 93].

Learning with Extremely Coarse Value Ap-

proximation: Many DP-based (RL) algorithms are
motivated by a desire for �nding highly accurate value
functions. However, it costs too much memory to
approximate such functions in many cases. In con-
trast, our approach does not stick to �nding accurate
value functions, because the policy can be improved by
a gradient-ascent search without explicitly computing
value estimates. However, shown in the experiments,
it costs many experiences instead of the memory re-
quired in DP-based methods.

Combining with Model-based Methods: Since
the proposed algorithm in this paper is a model-free
and memory-less method, many model-based meth-
ods can make use of it easily. It is interesting to
note that [Davies et al. 98] proposed a model-based
approach that uses environment models to make up
for the poor ability of the value function approxima-
tion.

6 Conclusions

This paper presented a hierarchical RL algorithm com-
posed of Q-learning and local linear controllers to solve
a non-linear control problem in which state and action
spaces are continuous. It is a hybrid method between
DP-based value estimation and policy improvement by
gradient-ascent without value estimation. The con-
tinuous state-action space is discretized into an array
of coarse boxes, and roughly the high-level hierarchy
estimates the value functions over the discrete space
to �nd a globally preferable policy. The local lin-
ear controllers are to improve the policy by stochas-
tic gradient-ascent. This method does not need to �t
accurate value functions, therefore it may be promis-
ing to overcome the curse of dimensionality. The algo-
rithm was applied to a simulation of a cart-pole swing-
up problem, and better solutions are found than those
of traditional discrete RL methods.
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