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Abstract. We propose a new reinforcement learning algorithm based
on a policy gradient method combining with importance sampling. Stochas-
tic gradient methods can easily be applied to continuous state-action
control problems, and also it can improve policies under some class of
POMDP environments, however, the algorithms are limited to on-policy
learning, i.e., the improvement is executed by the experiences under the
only target policy. Importance sampling techniques enable the gradient
methods to make use of all experiences for the learning. We develop the
algorithm for continuing (not episodic) tasks under discounted reward
criteria, and demonstrate through simulations of a maze world and a
two-link arm robot problem.

1 Introduction

Reinforcement learning (RL) [6] is a promising approach for robots to obtain control
rules through a process of trial and error. Learning control in real world applications
is to deal with both continuous state-action spaces, and partially observability that
causes non-Markovian e�ects. Stochastic gradient methods [7] are one approach to
overcome such problems. In many policy gradient methods, a parameterized stochastic
policy is updated according to the gradient of the value function with respect to the
policy parameters. It is easy to implement multidimensional continuous action by using
some continuous distribution (e.g. normal distribution) for the policy function [1][2].
Stochastic gradient methods can be classi�ed to direct policy search algorithms [9] that
would not make use of Markov properties of the environments. Therefore, the stochastic
gradient methods can improve policies under some class of POMDP environments.

A drawback of the conventional stochastic gradient methods is that the learning
is too slow. One reason is that the algorithms are limited to on-policy learning, i.e.,
the improvement can be executed by the experiences under the only target policy. In
many real-robot applications, the same robot must experience trial and error to learn
many policies for the respective tasks. Therefore, sharing the same experiences for the
learning of all policies will save great amount of trials.

Importance sampling techniques enable the policy search algorithms to execute o�-
policy policy improvement [3], but these methods are limited to applying episodic tasks.
In this paper, we propose a new reinforcement learning algorithm based on a policy
gradient method combining with importance sampling, and develop it for continuing
(not episodic) tasks under discounted reward criteria.

2 Background



2.1 Environment Model

Let S denote state space, A be action space, R be a set of real number. At each dis-
crete time t, the agent observes state st 2 S, selects action at 2 A, and then receives
an instantaneous reward rt 2 R resulting from state transition in the environment. In
general, the reward and the next state may be random, but their probability distribu-
tions are assumed to depend only on st and at in Markov decision processes (MDPs),
in which many reinforcement learning algorithms are studied. In MDPs, the next state
st+1 is chosen according to the transition probability T (st; a; st+1), and the reward rt is
given randomly according to the expectation r(st; a).

The agent does not know T (st; a; st+1) and r(st; a) ahead of time. The objective of
reinforcement learning is to construct a policy that maximizes the agent's performance.
A policy � is de�ned as probability distribution over action space under given state.
A natural performance measure for �nite (or in�nite) horizon tasks is the cumulative
discounted reward:

Vt =
TX
k=t

k�t rt+k , (1)

where the discount factor, 0 �  < 1 speci�es the importance of future rewards, and
Vt is the value at time t. In MDPs, the value under policy � is de�ned as a function of
state:

V �(s) = E

"
1X
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t rt

����� s0 = s; �

#
, (2)

where Ef�g denotes the expectation. The objective in MDPs is to �nd an optimal
policy that maximizes the value of each state s de�ned by Equation 2.

In this standard notation of MDPs, the reward is de�ned as scalar, but in this paper,
we give reward signal as a vector, and each component in the reward vector is given for
each di�erent task respectively, and each task holds its policy.

2.2 Importance Sampling

Importance sampling is a classical technique for handling a mismatch of distributions,
that is, we would like data drawn from the distribution of the target policy � to estimate
values (or its gradient), but the data is drawn from the distribution of the other behavior
policy �0. Let H = f< s0; a0; r0; : : : sT ; aT ; rT ; sT+1 >g denote the set of all possible
experience sequence of length T + 1, and let a history h(s) 2 H with s0 = s. R(h)
denotes the cumulative discounted rewards: R(h) =

PT
t=0 

t rt. Consider a sample
history drawn from the distribution induced by the behavior policy �0 executing multiple
times in the environment. Using a standard importance sampling method [3] [5], the
estimated state value is given by
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(3)
where �t denotes probability (or density) of executing action at under given policy �,
rt denotes the reward in the sequence h at time t. Intuitively, the likelihood ratio
�0�1����T
�0

0
�0

1
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T

on reward rt should not depend on the future after time t. Based on this idea,

per-decision importance sampling [4] is shown by:
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It is shown that these algorithms are unbiased, that is, EfV̂ �(s)g = V �(s) where
T ! 1. For the policy improvement, we should calculate the gradient of the value
function. Assume that the parameterized policy function � is given by the policy
parameter �, and the behavior policy �0 is given by a parameter �0, then
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The calculation of the gradient of the action likelihood with respect to the policy pa-
rameters @

@�

Qt
k=0 �k is given by:
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This calculation can easily be done incrementally by accumulating the eligibility @
@�
ln�t.

3 Gradient Method using Importance Sampling

3.1 The Algorithm

We develop a policy improvement algorithm based on the value gradient shown in the
previous section. Figure 1 shows the outline of the algorithm. When the behavior
policy �0 is equal to the target policy �, then the algorithm is exactly the same as the
standard stochastic gradient methods. Multiple policies can be applied to the target
policy, however, each policy needs memory space for the policy parameter vector �, its
eligibility trace �e(t) and discounted sum of the likelihood ratio L(t), that is a scalar
variable, respectively. A very similar idea is already proposed by [8] except for applying
continuing tasks.

The policy parameter vector � would be updated appropriately by the sum of ��t;
In our experiments, �� is averaged according to ���t ��t+���t�1 and update policy
parameters by �  � + � ���t

j���tj
for each time step, where � is a small positive constant,

and j � j denotes L1 norm.

3.2 Features

{ Since the likelihood ratio �0�1 ����T
�0

0
�0

1
����0

T

is calculated incrementally on each time step

by L(t), the learner does not need to hold state-action-reward sequences. It is
incorporated into the calculation of the eligibility trace in Figure 1.

{ Although the behavior policy is limited to one on each step, multiple target poli-
cies can be learned concurrently. If the reward signal is given by a vector, and each
component of the vector is assigned to the corresponding task, then the agent can
learn multiple tasks from the same trial-and-error experiences. Especially, when
all policies are similar at the early stage of the learning, the policies can share the
same experiences, and the learning eÆciency will be proportional to the number
of the tasks.

{ However, the learning proceeds and the di�erences of the action selection probabil-
ity between the tasks are getting large, then the weight of sharing the experiences
tends to get small because the likelihood ratio �0=� would approach to zero.



� �
1. Observe state st, choose action at with probability (or density) following a

behavior policy �0(at; �; st), and perform it.

2. Calculate �t that is a probability of selecting action at under the condition of
the target policy � in the state st.

3. Calculate the eligibility of the target policy parameter �: e(t) = @

@�
ln�t

4. Update the eligibility trace according to:

L(t) = (1 + L(t� 1))
�t

�0t

�e(t) = L(t)e(t) + 
�t

�0t
�e(t� 1), (7)

where  is a discount factor, and L(t) is an accumulated likelihood ratio.

5. Observe immediate reward rt and update policy parameters:
��t = (rt � b)�e(t), where b is a reinforcement baseline parameter.

6. Let t t+ 1, and go to step 1.
� �

Figure 1: The policy improvement algorithm combined with importance sampling.

3.3 Analysis of the Algorithm

As sown in Figure 1, the discounted sum of the likelihood ratio L(t) is given by
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The backups of the policy parameter �� are given by
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From Equation 8 and 9, we get
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By Equation 6 and 10, the sum of all backups is given by
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The last transformation of Equation 11 is obtained by the derivative of Equation 1 with
respect to �. Equation 5 and 11 derive the following results:
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It is shown that the target policy parameter can be improved towards the sum of the
gradient of the value function on each time step. Note that this result does not depend
on the Markov property, therefore it can be extended to non-Markovian environments.

4 Experiments

4.1 Maze World: A MDP Environment

s0 s1 s2 s3 s4

s5 s6 s7 s8 s9

s10 s11 s12 s13 s14

s15 s16 s17 s18 s19

s20 s21 s22 s23

��
��

?

-

6

-
state S : 24 states
action A : To move North, East, South or West (4 actions)

The agent cannot move across the wall.
When the agent enters any goal,
the agent jumps all states with uniform distribution.
Reward Ra(s; s0) = 100 if the agent enters the goal,
or 0 otherwise.
The symbol O denotes the agent.
The current state is, st = s11.

Figure 2: A maze problem with four tasks. Task 0: Goal if South is selected at s19, Task 1:
Goal if East is selected at s22, Task 2: Goal if East is selected at s4, Task 3: Goal if North is
selected at s6.

The algorithm is demonstrated in a maze world with four tasks as shown in Figure
2. In the importance sampling by switching policies, the agent changes its behavior
policy for Task 0 (policy 0), Task 1 (policy 1), Task 2 (policy 2) or Task 3 (policy
3) in turn at intervals of 500 steps. In the importance sampling by a random policy,
the agent keeps its initial behavior policy. In the importance sampling methods, the
learning for all policies are concurrently executed sharing the same experience under



the behavior policy. It is compared with a simple policy gradient method, in which the
learning is executed only in the target policy that equals to the behavior policy. That
is, the policy 0 in the simple gradient method is updated by using the data of only
500 steps whereas the agent performs 2000 steps. The simple policy gradient method
can be easily arranged by modifying our algorithm to � = �0 for each task. The agent
observes the position in the maze (24 states), and selects one action from North, East,
South, or West. When the agent enters one of the goal, the only corresponding policy
receives positive reward rt = 100, or rt = 0 for other policies, and then the agent jumps
next state with uniform distribution.

The agent calculates action-probability of policies in the current state s by:

P j(aijs) =
exp(�ji (s))

exp(�j0(s)) + exp(�j1(s)) + exp(�j2(s)) + exp(�j3(s))
,

where P j(aijs) denotes the probability of selecting action ai in state s following the
policy �j, and �ji (s) is the policy parameter of �j. If the action ai is selected, the
eligibility ejk(s) for the policy parameter �ji (s) is given by

ejk(s) =
@

@�jk(s)
lnP j(aijs) =

(
1� P j(aijs) if k = i
�P j(aijs) if k 6= i

We adopted this scheme to the calculation of �t, �0t and e(t) in Figure 1.
The simulation results are shown in Figure 3. The discount factor  equals 0:9

and learning rate � equals 0:01 for both algorithms. The learning performance of the
proposed method is about two or three times as good as that of the standard gradient
method, except for Task 1. The reason is that since the goal of Task 1 is located in the
depth of the maze, the number of visiting to the goal of Task 1 tends to small.

4.2 Locomotion Tasks on a Two-link Arm Robot: Applying Continuous Action Space

We applied the algorithm to a robot shown in Figure 4. The objective of learning is
to �nd control rules to move forward (Task 0) or backward (Task 1). The joints are
controlled by servo motors that react to angular-position commands. At each time
step, the agent observes angular-position of two motors and a touch sensor attached
to the leg top according to (�1; �2; �3), where each component is normalized between
0 � �1; �2 � 1, and selects action according to the behavior policy. The angular-
position �1; �2 is de�ned in two dimensional continuous space. The touch sensor �3
takes only 0 or 1. The action is a destination of angular-position. Let a vector (a(1); a(2))
be the destination of angular positions of two-motors as an action output. It is also
de�ned in two dimensional continuous space. When the agent select action, the the
motors move towards the commanded positions. When the joint-angles move to the
commanded position, or changing the sensor variables, then the reward is given as the
result of the transition, and the time step proceeds to the next step. When the sensor
variable changes in the way of moving joint-motors, the angular-position would not
correspond to the destination position. For this reason, there exists uncertainty of the
state transition. For Task 0, the immediate reward is the distance of the body movement
caused by the previous action. When the robot moves backward, the policy for Task
0 receives negative reward. For Task 1, all rewards are simply given by inverting the
sign of the reward of Task 0. The function of � and �0 are given by Gaussian: The
action a(i) for the motor (i) is selected following normal distribution N(�i; �i), where
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Figure 3: The performance of the algorithm compared with a standard gradient method in
the maze world, averaged over 10 trials. The errorbar denotes the standard deviation. The
top left shows Task 0, top right is Task 1, bottom left is Task 2, bottom right is Task 3.

�i = 1=(1 + exp(�
P

k xk�i;k) and �i = 1=(1 + exp(��i). In this experiment, we tried
two ways of generating the feature vector X: One is broad state generalization that
takes X = (x1; : : : x6) = (�1; �2; �3; 1 � �1; 1 � �2; 1 � �3). The other is a �xed-grid
approximation, which consists of 8x8x2 boxels over the state space. The details of the
calculation for �, �0 and e(t) are mostly omitted here for the reason of the limited space,
but it is the same as the implementation for a four-legged robot in our works [2]. In this
experiment, we use the same parameters in all the algorithms,  = 0:9 and � = 0:02.

Figure 5 and 6 show learning curves for the robot on the task 0 and 1. The impor-
tance sampling methods are too bad and quite unstable with using broad state gener-
alization. Using the grid approximation, the proposed methods outperformed than the
standard gradient method, however, the acquired control rules are inferior to those of
the standard method with using broad state generalization.

5 Discussion and Future Work

We propose a policy gradient method combining with importance sampling. It en-
ables o�-policy policy improvement under the environments that are continuing (non-
episodic) tasks, and/or continuous-action space. The e�ect of sharing the experiences
among di�erent policies is clearly observed in the maze problem. However, it is weak
when the the agent adopts broad state generalization as the state representation. The
reason is that since the state occupancy destribution is di�erent between o�-policy and
on-policy, the o�-policy learning with broad state generalization tends to spoil good



Figure 4: The left is a real two-link robot. The right-side shows a simulator of the robot used
in this experiment. The state-action space is continuous.
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Figure 5: Learning curves of the algorithms using broad state generalization averaged over 10
trials on the robot simulator. The left is Task 0, the right is Task1. The importance sampling
methods are inferior to the standard gradient methods.

acton-distribution around on-policy states. One way to avoid this undesirability is to
use localized state representation such as grid approximation methods. However, the
grid approximation methods cause problems arising from curse of dimensionality. De-
signing appropriate state representation for importance sampling policy improvement
methods in the high-dimensional state space is challenging future work. We are trying
to extend our method to an actor-critic algorithm that estimates state value for each
target policy and makes use of the value for the policy improvement. We also intend
to apply the algorithm to a real one leg to four leg robots as future work.
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