
Distributed Reinforcement Learning using
Bi-directional Decision Making for Multi-

criteria Control of Multi-Stage Flow Systems
Kei Aoki, Hajime Kimura, Shigenobu Kobayashi

Tokyo Institute of Technology, 4259 Nagatsuda midori Yokohana Kanagawa Japan

Abstract. Autonomous control systems have been requested recently for large-scale
real systems. Distributed reinforcement learning is attracting attention specifically in
control of physical flow systems such as lifelines. In this paper, we will introduce a
model of Multi-Stage Flow System (MSFS). MSFS is a framework which can describe
various physical flow systems. Furthermore, it is effective in handling multi-criteria,
multiple constraints under uncertainty and so on that are difficult to solve in con-
ventional methods because of its features. We propose a new bi-directional decision
making algorithm based on a least commitment strategy. We apply our method to con-
trolling of real sewerage systems. The simulation results show that only our method
satisfies permissible levels and attains the performance within an acceptance level.

1 Introduction

A method of autonomous control has been requested recently for large-scale real system and
has been researched extensively. It is requested to lifeline systems such as sewerage systems
especially because they are necessary and indispensable to our modern day life.

Real systems have an uncertainty and a time lag, etc., and approaches using Dynamic
Programming or Reinforcement Learning (RL) are known[7]. The lifeline systems are of a
large-scale and have a wide-area network composed of service centers. Distributed control
within the framework of Multi Agent System (MAS) is promising[6]. Thus, approaches that
use distributed RL (DRL) are attracting attention. However, the example of applying DRL to
the real systems is not common practice. Moreover, the targeted problem class rarely consid-
ers multi-criteria and multiple constraints, etc.

We should target a realistic problem class for consideration in the application of the ac-
quired control policy, and clarify features of the real systems that are multi-criteria, multiple
constraints, handling of constraints under uncertainty, interactions and so on. Therefore, we
model Multi-Stage Flow Systems (MSFS) which can describe various physical flow systems
as a new problem class based on these features. However, conventional DRL cannot address
these features directly. Therefore, we propose an approach that acquires an appropriate con-
trol policy by addressing them directly.

We propose new DRL using Bi-directional Decision Making (BDM) based on the least
commitment strategy[8] in order to address multi-criteria of MSFS which treats a smoothing
control at the root of MSFS and satisfies constraints of each agent. As opposed to conven-
tional DRL in which each agent makes a decision independently, our method shares decision
making among agents bi-directionally by using a tree structure of MSFS. Firstly each agent
presents a feasible action set selected in terms of constraint satisfaction, subsequently in the
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Figure 1: Image of MSFS. Symbol of chevron in cir-
cle is a flow controller (e.g. pump).
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Figure 2: Model of a Service Center in MSFS.

direction of the agent of the root node from the agents of the leaf node. Then, each agent
decides unique action in terms of smoothing, subsequently in the direction of the leaf node
from the root node. Moreover, we propose a selecting method of the action sets to satisfy the
given permissible levels by using value functions to address multi-criteria and multiple con-
straints. We apply our method to a real sewerage system, and aim to achieve a control policy
that fulfills a practicable acceptance level of smoothing while satisfying the given permissible
levels of constraint satisfactions.

Conventional methods give the trade-off rates explicitly, and achieve a co-operative be-
havior within the framework of DRL using a linearly weighted sum (LWS) of value functions
[5, 6]. MAXQ[2] hierarchizes a complex task by defining subtasks, and improves the effi-
ciency of learning. However, multiple constraints of MSFS are satisfied by appropriate inter-
actions of agents. In addition, it needs to balance with the purpose of smoothing. Therefore,
an appropriate design of weights where such a complex policy is achieved by the approxima-
tion of the value function using LWS is complicated. The division of the task into the subtask
is also difficult. Our method aims to achieve an appropriate balance not by the trade-off rates
that are given by the designer but by BDM and the selection of action sets which satisfy
permissible levels. Incidentally, there exists methods using lexicographical optimal policy[3]
and policy of handling the risk[4] from the viewpoint of handling constraints our method is
similar, though no MAS. In addition, there exists researches which treat distributed constraint
satisfaction problems[9], though no RL of control.

In Section 2, we investigate MSFS and how it is modeled and formulated. Section 3
presents our approach and proposal method. Experimental results in a sewerage system show
its effectiveness in Section 4. Section 5 concludes this paper.

2 Multi-Stage Flow Systems

2.1 The outline of Multi-Stage Flow Systems

MSFS describe various physical flow systems that target applications such as water supply
and sewerage systems, power grids, gas grids, distribution systems and so on.

MSFS is a multi-stage tree structure whose node is the service center (SC) in Fig.1.1 SCs
of the leaf node of tree structure are called terminal SC (SCt), SC of the root is called root SC
(SCr) and the rest are called middle SC (SCm). SCr is connected with a special plant such
as power plants, production plants, treatment plants and so on. Each SC provides service for
customers in the newsbeat by controlling the flow received from the upper SC or the plant.
Flow is a continuous or discrete variable such as water or products. Service is to supply the
demand for customers. A main purpose of MSFS is to provide service in just proportion by
appropriately controlling flow.

Each SC has to absorb the uncertainty of customer’s demand using a buffer such as a

1There exists bypasses for emergency, etc. and we exclude them in this paper.
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warehouse and a reservoir. However, because a stock level has a bound pair constraint2due
to limitation of capacity etc., controlling flow that is kept within its range in advance is nec-
essary for a good service.3 However, it is difficult to completely guarantee the constraint
satisfactions under demands with uncertainty. Therefore, a permissible level is set to each
SC in general as a permissible rate of the operational constraint violations under the safety
margin. A permissible level of each SC is decided beforehand depending on a fluctuation of
demand and a capacity of a buffer, etc.

On the other hand, a supply of plant to MSFS should be as constant as possible from
an economical and operational viewpoint.4 Therefore, SCs have to absorb the fluctuations of
customer’s demands by cooperatively controlling flow. And, SCr connected with plant has to
control the flow as constant as possible.

Therefore, MSFS is a multi-criteria control problem concerning a smoothing of flow of
SCr and multiple constraint satisfactions of stock level of each SC.

2.2 Modelling Multi-Stage Flow Systems

Fig.2 shows the model of SC of MSFS. MSFS consists of N service centers, and the ith SC is
described as SCi (i=0,· · · ,N−1). Lower(i) denotes the set of SC connected with the lower
position of SCi, and Upper(i) denotes SC connected with the upper position of SCi. SC0 is
SCr, and Upper(0)=∅ because upper facility is a plant. SCi is called SCm when i>0 and
Lower(i)�=∅. It is called SCt when Lower(i)=∅. Each SCi has a buffer with the bound pair
constraint (Li

MAX , Li
MIN ).

Each SCi is characterized by parameters as follows.

• Li(t) is a stock level of SCi at t. Below exists as the following constraint conditions.

Li
MAX > Li(t) > Li

MIN . (1)

• di(t) is the demand of customers of SCi at t.

• ai(t) is the inflow that SCi receives at t, and is a control variable.

• bi(t) is the outflow of SCi, and is the sum of the total inflow of Lower(i) and di(t).

bi(t) =
∑

j aj(t) + di(t), SCj ∈ Lower(i). (2)

The stock level at t+1 is updated by a function F i(·) which depends on the buffer.

Li(t + 1) = Li(t) + F i
(
bi(t) − ai(t)

)
. (3)

Negative rewards (penalty) are defined for the control performance as follows.

• ri
c (Li(t)) is penalty of constraint violations where Li(t) gets out of Eq.1.

2Operational constraint is decided by setting a safety margin so as not to arrive at a physical limit in the
buffer. Though the system does not break down owing to its violations, the system should be operated keeping
it as effective as possible.

3For instance in a water supply system, a water level of a pumping plant may arrive at the lower limit if a
large demand is generated when the water level is low. It may interfere with providing service. If such a large
demand is expected, it is necessary to keep it high by controlling flow in advance.

4For instance in a sewerage system, changing an amount of treatment processing is costly because of the
biochemistry processing, etc. Thus, smoothing of an inflow is requested of the sewage treatment process. This
is similar to the purification process in a water supply system. In a distribution system, smoothing a production
volume is requested for reasonable scale of the production line which meets demand under seasonal variations.
In a power grid and a gas grid, it is advantageous to suppress the fluctuation of production volume for reasonable
scale of plant and a raw procurement.
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• rs (a0(t), a0(t − 1)) is the penalty where SCr changes its flow. In regard to flow of SCr,
the minimization of a change is equal to the achievement of the smoothing.

Therefore, MSFS is modeled as (N+1) dimension multi-criteria problem.

min
A

{ ∑
t r

i
c (Li(t)) , i = 0, · · · , N − 1.∑

t rs (a0(t), a0(t − 1)) ,
(4)

where A= (a(0), · · · ,a(t), · · · ); a(t) =
(
a0(t), · · · , aN−1(t)

)
is a combination of ai(t) of

all SCi (i=0,· · · ,N -1) at all time.

2.3 Formulation to Distributed Reinforcement Learning

MSFS is a distributed system whose each SCi has the function of a sensor and an actuator as
shown by Fig.1 and Section 2.2. The method using the distributed control is considered highly
probable in terms of RL[6]. In this paper, MSFS is assumed to be MAS which considers each
SCi to be an agent. We formulate a state-action space and rewards, and approach MSFS with
the framework of DRL.
• ai(t) is an amount of flow and the action of SCi at t. Flow is a discrete variable, and a

continuous value makes it discrete appropriately in this paper.
• si(t) is a state of SCi at t, and is defined as a vector according to the position.

s0(t) = (Time(t), L
0(t),

∑
j aj(t), a0(t − 1)) ; SCr , SCj ∈ Lower(i).

si(t) = (Time(t), L
i(t),

∑
j aj(t)) ; SCm , SCj ∈ Lower(i).

si(t) = (Time(t), L
i(t)) ; SCt , Lower(i) = ∅.

(5)

Time(t) = t (mod τ ) is a periodic function at cycle τ concerning t, and denotes the time,
the season and so on of an environment. di(t) synchronizes at a constant cycle in general,
though it cannot be observed beforehand.5 SCr measures the change of flow (smoothing)
by observing a0(t − 1) according to Eq.4. Each SCi attempts the satisfaction of constraint
condition in Eq.1 by observing Li(t),

∑
j aj(t) (however at SCt, Lower(i) = ∅) and Time(t)

in place of di(t) according to Eq.2, 3.
• ri(t) is a reward of SCi at t, and is defined as r0 is a vector and the rest are a scalar

according to Eq.4.

r0(t) = (r0
c (L

0(t)), rs(a
0(t), a0(t − 1))) ; SCr.

ri(t) = ri
c(L

i(t)) ; SCm,SCt.
(6)

• Qi(si(t), ai(t)) is a value function corresponding to ri(t), and denotes the total discounted
expected reward based on a certain policy. The value function of SCr is defined as a vector
as well as r0(t). It is calculated by an update rule enhanced based on the SARSA learning
[7] (cf. Section 3.5).

Q0(t) = (Q0
c(s

0(t), a0(t)), Qs(s
0(t), a0(t))) ; SCr.

Qi(t) = Qi
c(s

i(t), ai(t)) ; SCm,SCt.
(7)

• pi
v(t) is a constraint violations rate during [t−∆t, t]. ∆t is an arbitrary fixed period.

• pi
p is a permissible constraint violations rate during ∆t. It is called a permissible level,

and is given beforehand according to the safety management, etc.

We aim to acquire the control policy of MSFS which achieves a smoothing of the flow of
SCr as effective as possible satisfying pi

v(t) ≤ pi
p under the formulation above.

5For instance, customer’s necessities that include electricity and water supply increase in the mornings and
evenings, then decrease at midnight because of the customer’s life cycle.
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Figure 3: Bottom-up FAS selection. ai
k is a kth action of SCi. If Lower(i)�=∅, Qi is represented with reference

to the combination of the lower SC’s actions a; Lower(i)={l1, l2} in (b).

3 Bi-directional Decision Making

3.1 Our Approach

A new method is needed to address MSFS appropriately because of multi-criteria, multiple
constraint and so on shown in Section 2. The following points conflict by dividing the state-
action space and the rewards into each SCi as shown in Section 2.3.

• It is necessary to select actions of Lower(i) for selecting action of SCi beforehand from
the definition of si(t) in view of the constraint satisfaction. Thus, the decision making
process is requested to perform from bottom upwards from SCt to SCr.

• A penalty for smoothing is given to SCr from the definition of rs (a0(t), a0(t − 1)). When
SCr selects the action which leads to smoothing, to that end, it is necessary that Lower(i)
select accommodative actions. Thus, the decision making process is requested to perform
from the top downwards from SCr to SCt.

To settle this competition, we introduce Least Commitment Strategy (LCS) based on the
algorithm that Waltz used to understand line drawings[8]. When existing information can
be used for decision making locally, this strategy sets aside a part of the decision by only
deciding the partial and minimal solution without deciding completely. Then, a complete
solution can be obtained based on all partial solutions and interactions.

Our approach based on LCS is as follows. If the actions of Lower(i) are decided, each
SCi can envisage the transition of Li(t) according to Eq.3 and Eq.5 independently of other
SC’s. However, each SCi selects the set of actions estimated to satisfy pi

v(t) ≤ pi
p according

to Qi
c without deciding the action uniquely as described below, because it cannot address a

smoothing at this stage. This set is called Feasible Action Set (FASi(t)), and FAS of Upper(i)
is selected subsequently by presenting FASi(t) to Upper(i). After all FASi(t) are selected,
SCr uniquely selects a0(t) from FAS0(t) in view of a smoothing. Decision making is prop-
agated to Lower(i) subsequently, and ai(t) of each SCi is decided uniquely. Because each
ai(t) is chosen from FASi(t), the satisfaction of pi

v(t) ≤ pi
p can be expected.

Our approach uses Qi
c to select FASi(t) appropriately. We introduce the threshold Ωi(t)

of Qi
c of each SCi, and choose the action sets with a high possibility to satisfy the permissible

levels by adjusting these thresholds. Ωi(t) is used to classify ai(t) in terms of whether ai(t)
in si(t) satisfies pi

v(t) ≤ pi
p from the viewpoint of Qi

c (si(t), ai(t)). Each SCi updates Qi

according to ri(t), and improves the control policy.
Therefore, the bi-directional action selection based on LCS and the selection of FAS

which uses Ω are the main ideas of BDM. The proposed method consists of the following 4
steps (cf. Section 3.2-3.5), and their steps are performed repeatedly in its algorithm.
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3.2 Bottom-up selection of Feasible Action Sets

FASi(t) is selected according to Qi
c concerning the constraints along the following lines. This

step performs subsequently from SCt to SCr from the bottom upwards.

• SCi observes state si(t).

• Because of Lower(i) = ∅ at SCt, ai(t) are sorted according to Qi
c(s

i(t), ai(t)) and ai(t)
which satisfy Ωi(t) < Qi

c are added to FASi(t) as shown in Fig.3(a).

• Because SCm and SCr have SCj ∈ Lower(i),
∑

j aj(t) is calculable according to a
combination a= (aj(t)) ; aj(t) ∈ FASj(t) that consists of actions that are taken out one
by one among each FASj(t) that SCj presents. Thus, the variation of si(t) is recognized,
and Qi

c corresponding to each a is addressed as shown in Fig.3(b). Then, ai(t) which
satisfy Ωi(t) < Qi

c as well as SCt are added to FASi(t). And, each a is also memorized
because Qi

c depends on a.

• When FASi(t) becomes an empty set because all actions are excluded by Ωi(t), argmaxaQ
i
c

is added to FASi(t) .

• If Upper(i)�=∅, FASi(t) is presented in Upper(i), otherwise this step ends.

3.3 Top-down Selection of Actions

After all SCi decides FASi(t), all actions are decided uniquely subsequently from SCr for
smoothing. SCr selects argmaxa0(t)Qs(s

0(t), a0(t)) from FAS0(t) first (a left of Fig.4). Be-
cause this a0(t) accompanies the actions of Lower(0), these actions are instructed to Lower(0)
as the broken line shows. Then, SCm (i=m) decides am(t) according to Upper(m)’s in-
struction, and gives Lower(m) instructions of their actions similarly. If the action am(t)
instructed from Upper(m) is a plural in FASm(t), the actions of Lower(m) which maximize
Qm

c (sm(t), am(t)) are instructed (a center of Fig.4). The action of SCt is decided according
to the given instruction (a right of Fig.4).

Therefore, in SCm and SCt which do not obtain a reward of smoothing directly, it is
possible to contribute to smoothing as effective as possible satisfying a permissible level.
After selecting all actions, each SCi performs the action concurrently.

3.4 Threshold Adjustment

It is necessary to adjust the threshold Ωi(t) appropriately to select the action set to which
the FAS selection satisfies a permissible level pi

p. In this paper, to become pi
v(t) = pi

p by
comparing an obtained pi

v(t) with a given pi
p, Ωi(t) is adjusted by a slight value ε. Therefore,

because the constraint satisfaction has not been achieved then the pi
v(t) > pi

p, Ωi(t) is severely
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adjusted. Conversely, because the constraint satisfaction has been achieved then the pi
v(t) <

pi
p, Ωi(t) is eased to contribute to smoothing.

Ωi(t + 1) =

{
Ωi(t) + ε , pi

v(t) > pi
p,

Ωi(t) − ε , pi
v(t) < pi

p.
(8)

Therefore, Ωi(t) is adjusted to the maximum value that pi
v(t) is suppressed to pi

p. All ai(t)
that are expected to satisfy pi

v(t) ≤ pi
p in view of Qi

c are added to FASi(t).

3.5 Updating Value Functions

The SARSA learning (SARSA)[7] is a method for learning the value function of state-action
pairs according to trial and error based on a certain policy. In this paper, to update our value
functions, we enhance SARSA.
• The update of Q0 of SCr uses SARSA in each (Qs, Q

0
c). Below, o is s or c.

Q0
o(s(t), a(t)) = (1 − α)Q0

o(s(t), a(t)) + α
(
ro + γQ0

o(s(t + 1), a(t + 1))
)
. (9)

• To update the value function Qi at SCi; i > 0, we enhance SARSA as follows in view of
using FASi(t) for the decision making.

Qi(s(t), a(t)) = (1 − α)Qi(s(t), a(t)) + α(r + γV i
f ). (10)

V i
f =

1

|FASi(t + 1)|
∑

a(t+1)′
Q(s(t + 1), a(t + 1)′), (11)

where a(t + 1)′ ∈ FASi(t + 1) and |FASi(t + 1)| is the number of a(t + 1)′.
Update rule (Eq.9) of SARSA is based on value function Qi(si(t+1), ai(t+1)) of action

ai(t+1) selected at t+1. Update rule (Eq.10) of our method is based on value function V i
f of

action set FASi(t+1) selected at t+1. Upper(i) can give SCi the instruction of an arbitrary
action from among FASi as stated above. Considering this arbitrariness, the value function
V i

f of FASi(t+1) should reflect the value function Qi(s(t+1), a(t+1)′) of the action a(t+1)′

that is included in FASi(t+1). In this paper, we define the mean value as the value function V i
f

of FASi(t+1) (Eq.11). Therefore, our update rule (Eq.10) which uses FAS is an appropriate
extension of the update rule of SARSA (Eq.9).

4 Application to Sewerage System

We take up the control problem of a sewerage system, and confirm utility and availability by
the comparison with conventional methods. The target that consists of 5 SC as shown in Fig.5
is modeled on a real sewerage system with large-scale processing in Kawasaki, Japan. The
system supplies service of collecting sewage from customers, carrying it through the pump
plants, and purifying it in the treatment process. Because of collecting flow, we can model
it as MSFS by handling a reverse flow in Fig.1 and Fig.2. The flow ai(t) can be controlled
in about 10 discrete levels by switching several pumps with hourly decisions. The demand
di(t) for sewage disposal is uncertain so we input data of real demands of about one month
repeatedly. Total of the permissible level

∑
i p

i
p is given by 0.015 that is total of the pi

p of each
SCi at ∆t = 24.

The performance evaluation index of the control policy is defined as the number of pump
switches Sw of SCr. It can be considered that the fewer Sw is, the more smoothing will be
achieved, because Sw shows the frequency per day in which the amount of processing is
changed. The applicable standard that is clarified by the sewerage experts is Sw≤2 in this
real system. This target performance is called an Acceptance Level.
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4.1 Design of Compared Methods

To confirm the effectiveness of the proposal method, we choose the method of Schneider [6]
and Guestrin [5] as comparison methods. To be able to apply these methods, a part of the
formulation is changed as follows.

Because the method of Schneider cannot treat the reward of the vector directly, the reward
of SCr of Eq.6 is linearly summed with weight β0. And, it becomes single-criteria. ri; i =
1, · · · ,N−1 of SCm and SCt are the same as Eq.6.

r0(t) = r0
c (L0(t)) + β0rs (a0(t), a0(t − 1)) ; SCr.

ri(t) = ri
c (Li(t)) ; SCm,SCt.

(12)

The following methods are explained based on [6] under Eq.12 above. In these methods, each
SCi independently decides the action.
• The Local Reward DRL (LRDRL) setting: Each SCi independently decides the action

according to the local reward shown in Eq.12.
• The Global Reward DRL (GRDRL) like setting: All SCi share the reward rs concerning

a smoothing of SCr.
ri(t) = ri

c (Li(t)) + βirs (a0(t), a0(t − 1)) ; i = 0, · · · , N − 1. (13)

• The Distributed Reward Function (DRF) setting: The reward is shared with connected
SCj . rj(t) denotes the reward in Eq.12.
ri(t) =

∑
j βjrj(t) ; SCj ∈ SCi ∪ Upper(i) ∪ Lower(i), i = 0, · · · , N − 1. (14)

• The Distributed Value Function (DVF) setting: The value functions are shared with con-
nected SCj by using the following update rule under Eq.12. (refer to [6], in detail.)

Qi(s, a) = (1 − α)Qi(s, a) + α
(
ri + γ

∑
j f(i, j) maxaj

Qj(sj, aj)
)

. (15)

Next, for Coordinated Reinforcement Learning (CRL) of Guestrin[5], we consider the
coordination graph that is comprised of connected relationships which can be seen in Fig.5.
The pair of SCi and SCj is described as SCij , the system is addressed by (i,j)={(0,1), (0,2),
(0,3), (1,4)}, and we formulate it as follows.
• Though the state is given as follows according to Eq.5,

∑
j aj(t) is excepted because SCij

contains the interaction.
s0i(t) = (Time(t), L

0(t), Li(t), a0(t − 1)) ; SC0i , i = 1, 2, 3.
s14(t) = (Time(t), L

1(t), L4(t)) ; SC14.
(16)

• The action aij(t)=(ai(t), aj(t)) is a combination of the flow of SCi and SCj . The number
of actions becomes the min of 48 and the max of 88 in this system.

• The rewards are defined by a linearly weighted sum as follows according to Eq.6.
r0i(t) = β0ir0

c (L0(t)) + βiri
c (Li(t)) + rs (a0(t), a0(t − 1)) ; SC0i, i = 1, 2, 3.

r14(t) = β14r1
c (L1(t)) + β4r4

c (L4(t)) ; SC14.
(17)

• The global value function Q is approximated by the sum of local Qij correspond to rij.
The CRL selects the combination of the actions which maximizes Q(t).

Q(t) =
∑
(i,j)

Qij
(
sij(t), aij(t)

)
; (i, j) = {(0, 1), (0, 2), (0, 3), (1, 4)}. (18)
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Table 1: Performance of the pump switches (Sw) and the constraint violations (
∑

i pi
v(t)).

Method BDM LRDRL GRDRL DRF DVF CRL
∑

i pi
p

Sw 1.848 5.266 3.293 3.593 2.598 3.459 –∑
i pi

v(t) 0.0144 0.0341 0.0154 0.0307 0.0230 0.0552 0.015
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Figure 5: 5 plant Sewerage System.
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4.2 Experimental Results and Discussion

The learning curve is shown in Fig.6. The plots are an average performance of 10000 steps of
10 trials, and are an average of the best value up to the step. The daily average performances
of the control of each method are shown in Table 1. Each weight of the compared methods
(β, f(i, j)) is appropriately set in consideration of permissible levels.

LRGRL hardly achieves smoothing as seen in Sw=5.266. It is suggested that the cooper-
ation of the SCs is indispensable in smoothing the flow of SCr and that it may not be acquired
by pursuing a local reward. Though the system using GRDRL and DRF behaves more rea-
sonably than LRGRL that only uses local rewards, neither enough smoothing is achieved.
It is suggested that cooperated behavior necessary for smoothing may not be appropriately
acquired because the interactions cannot be controlled directly. In GRDRL, the constraint
violation as well as Sw is less than LRDRL. Pumping plants stabilize the amount of inflow
into SCr by the smoothing reward, and it is suggested that it mitigates the violations of SCr.

Though DVF acquires a tolerable performance, it does not arrive at the performance tar-
get. The difficulty in DVF which depends on the linear weighted sum is the selection of a risky
action to contribute to smoothing. It is suggested that such a selection may not be achieved
according to the fixed trade-off rates.

Though CRL that acquires better performance than DVF has been reported, the target per-
formance is not acquired here. Because the state-action space of SCij is large, it is considered
that the learning steps are insufficient. Therefore, with the state-action space where each SCi

is as large as this real sewerage system, it is suggested that the distributed control of each
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SCi is effective. Moreover, the performance when CRL learns until 100M steps is Sw = 3.3,∑
i p

i
p = 0.0216. Thus, it is suggested that approximation of the global value function to

obtain expected behaviors is difficult.
The proposal method (BDM) is an only method that acquires the control policy which

satisfies an Acceptance Level. Though the permissible levels might not be satisfied at the
opening of learning because the FAS selection has not enough accuracy, they are gradually
satisfied by adjusting the thresholds along with a learning process.

Fig.7 shows the behaviors of a certain 24 hours of the control policy provided by the
proposal method. Each SCi keeps Li(t) within the range of the bound pair constraints by
appropriately controlling ai(t). On the other hand, a0(t) is switched only twice at 0900 and
2100 hours in SCr, that is, a smoothing is achieved. The reason is that L0(t) is stabilized by
adjusting b0(t) giving Lower(i) instructions of the actions appropriately along a0(t). Espe-
cially, in the behaviors at 0500 hours, co-operated control of SC2 and SC3 counterbalances
the low flow of SC1 selected so that SC1 may keep its water level.

5 Conclusions

We showed and modeled MSFS in relation to various physical flow systems which suited
real problems. Our proposed model of MSFS is effective in handling the multi-criteria and
the multiple constraints that are difficult to solve in conventional methods. We proposed the
new DRL using the BDM which can address these features directly for MSFS.

We applied the BDM to the control problem of the sewerage system, and confirmed it
fulfilled an acceptance level satisfying permissible levels. Though the BDM is fundamentally
applicable to arbitrary MSFS, it becomes inefficient in cases where a certain SCi connects
a lot of SCj∈Lower(i). The connection of about 5 SC per one node seems limited in this
sewerage system though it depends on the number of actions of each SC.

Because the value function is calculated with FAS, the optimum of BDM is unexplained.
Future works will show theoretical analysis of rationality of BDM. Moreover, we will show
the generality of our method by applying it to other applications.
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