
Reinforcement Learning for Continuous

Action using Stochastic Gradient Ascent

Hajime KIMURA, Shigenobu KOBAYASHI
Tokyo Institute of Technology, 4259 Nagatsuda, Midori-ku Yokohama 226-8502

JAPAN

Abstract: This paper considers a reinforcement learning (RL) where the set of possible

action is continuous and reward is considerably delayed. The proposed method is based on a

stochastic gradient ascent with respect to the policy parameter space; it does not require a

model of the environment to be given or learned, it does not need to approximate the value

function explicitly, and it is incremental, requiring only a constant amount of computation per

step. We demonstrate the behavior through a simple linear regulator problem and a cart-pole

control problem.

1 Introduction

This paper considers a reinforcement learning (RL) where the set of possible action
is continuous and reward is considerably delayed. RL is the on-line learning of an
input-output mapping through a process of trial and error to maximize some statistical
performance index. Q-learning [14] is a representative of the RL algorithms for Markov
decision processes in which the set of possible action is discrete. However, many ap-
plications in real-world need to handle the continuous action space, and often mixed it
with discrete action space. This paper describes a new approach to RL for continuous
action space. We de�ne the agent's policy as a distribution of the action output, and we
present a policy improvement algorithm. The proposed method is based on a stochas-
tic gradient ascent with respect to the policy parameter space; it does not require a
model of the environment to be given or learned, it does not need to approximate the
value function explicitly, and it is incremental, requiring only a constant amount of
computation per step. We demonstrate an application to linear regulator problems.

2 Related Works

[3] and [1] have proposed DP-based RL methods for only LQR problems. RFALCON
[10] uses Adaptive Heuristic Critic [2] combined with a fuzzy controller. It is a policy
improvement method which needs to estimate the value function explicitly.

Agent

Probability of action a

�(a;W;X)

W : internal variable

X -
Observation

a -
Action

Figure 1: Stochastic policy; The agent can improve the policy � by modifying the
parameter vector W .

3 Stochastic Gradient Ascent (SGA)

The objective of the agent is to form a stochastic policy [12], that assigns a probability
distribution over actions to each observation, so that maximize some reward function.
A policy �(a;W;X) denotes probability of selecting action a in the observation X (Fig-
ure 1). The policy �(a;W;X) is a probability density function when the set of possible
action values a is continuous. The policy is represented by a parametric function ap-
proximator using the internal variable vector W . The agent can improve the policy �
by modifying W . For example, W corresponds to synaptic weights where the action
selecting probability is represented by neural networks, or W means weight of rules in
classi�er systems. The advantage of the parametric notation of � is that computational
restriction and mechanisms of the agent can be speci�ed simply by a form of the func-
tion, and we can provide a sound theory of learning algorithms for arbitrary types of
agents.

1. Observe Xt in the environment.

2. Execute action at with probability �(at;W;Xt).

3. Receive the immediate reward rt.

4. Calculate ei(t) and Di(t) as

ei(t) =
@

@wi

ln
�
�(at;W;Xt)

�
,

Di(t) = ei(t) +
Di(t � 1) ,

where
 (0 �
 < 1) denotes the discount factor, and wi does the ith component of W .

5. Calculate �wi(t) as
�wi(t) = (rt � b)Di(t) ,

where b denotes the reinforcement baseline.

6. Policy Improvement: update W as

�W (t) = (�w1(t);�w2(t) � � ��wi(t) � � �) ,

W W + �(1�
)�W (t) ,

where � is a nonnegative learning rate factor.

7. Move to the time step t+ 1, and go to step 1.

Figure 2: General form of the SGA algorithm.

Figure 2 shows a general form of the algorithm. The notation ei(t) in the 4th
procedure is called eligibility [15], that speci�es a correlation between the associated
policy parameter wi and the executed action at. Di(t) is a discounted running average
of eligibility. It accumulates the agent's history. When a positive reward is given, the
agent updates W so that the probability of actions recorded in the history is increased.

Some theorems have shown in [7], [8] and [9] that the weight changes in the direction of
the expected discounted reward biased by the state occupancy probability. Although
any convergence theory of this algorithm have not shown, it has the following practical
advantages.

� It is easy to implement multidimensional continuous action, that is often mixed
with discrete action.

� Memory-less stochastic policies can be considerably better than memory-less de-
terministic policies in the case of partially observable Markov decision processes
(POMDPs) [12] or multi-player games [11].

� It is easy to incorporate an expert's knowledge into the policy function by applying
conventional supervised learning techniques.

Algorithms for Continuous Action

Remember that the policy �(a;W;X) is a probability density function when the set
of possible action values a is continuous. The normal distribution is a simple and
well-known multiparameter distribution for a continuous random variable. It has two
parameters, the mean � and the standard deviation �. When the policy function � is
given by the equation 1, the eligibility of � and � are

�(a; �; �) =
1

�
p
2�

exp(
�(a� �)2

2�2
) (1)

e� =
at � �

�2
(2)

e� =
(at � �)2 � �2

�3
. (3)

One useful feature of such a Gaussian unit [15] is that the agent has a potential to
control it's degree of exploratory behavior. Because the parameter � is occupying
the denominators of equation 2 and 3, we must draw attention to the fact that the
eligibility is to divergent when � goes close to 0. The divergence of the eligibility has
a bad in
uence on the algorithm. One way to overcome this problem is to control the
step size of the update parameter vector using �. Such an algorithm is obtained by
setting the learning rate parameter proportional to �2, then the eligibility is given by

e� = at � � (4)

e� =
(at � �)2 � �2

�
. (5)

4 Preliminary Experiment: A LQR Problem

The following linear quadratic regulator problem can serve as a benchmark. At a given
discrete-time t, the state of the environment is the real value xt. The agent chooses a
control action at which is also real value. The dynamics of the environment is:

xt+1 = xt + at + noise , (6)

where noise is the normal distribution that follows the standard deviation �noise = 0:5.
The immediate reward is given by

rt = �x2t � a2t . (7)

The goal is to maximize the total discounted reward,

1X
t=0

t rt , (8)

where
 is some discount factor 0 �
 < 1. Because the task is a linear quadratic
regulator (LQR) problem, it is possible to calculate the optimal control rule. From the
Riccati equation, the optimal regulator is given by

at = �k1 xt , where k1 = 1� 2

1 + 2
 +
p
4
2 + 1

. (9)

The optimum value function is given by V �(xt) = �k2 x2t , where k2 is a some positive
constant. In this experiment, the possible state is constrained to lie in the range [�4; 4].
When the state transition given by Equation 6 does not result in the range [�4; 4], the
value of xt is truncated. When the agent chooses an action which is not lie in the range
[�4; 4], the action executed in the environment is also truncated.

4.1 Implementation for SGA

The agent would �rst compute values of � and � deterministically and then draw
its output from the normal distribution that follows mean equal to � and standard
deviation equal to �. The agent has two internal variables, w1 and w2, and it computes
the value of � and � according to

� = w1 xt , � =
1

1 + exp(�w2)
: (10)

Then, w1 can be seen as a feedback gain parameter. The reason for the calculation
of � is to guarantee the value to keep positive. We write e1, e2 as the characteristic
eligibility of w1 and w2 respectively. From Equation 4 and 5, e1 and e2 are given by

e1 = e�
@

@w1
� = (at � �)xt (11)

e2 = e�
@

@w2
� = ((at � �)2 � �2)(1� �) . (12)

The learning rate is �xed to � = 0:01, reinforcement baseline b = 0:0, discount rate

 = 0:9. The value of w1 is initialized to 0:35 � 0:15, and w2 = 0, i.e., � = 0:5.

4.2 Implementation for Actor/Critic Algorithms

We compare the algorithm with an actor/critic algorithm. The critic quantizes the
continuous state-space (�4 � x � 4) into an array of boxes. We have tried two types
of the quantizing: one is discretizing x evenly into 3 boxes, the other is 10 boxes. The
critic attempts to store in each box a prediction of the value V̂ by using TD(0) [13].
The critic provides TD-error = rt +
V̂ (xt+1)� V̂ (xt) to the actor as a reinforcement.
The actor updates policy parameters with using Equation 11, 12 as:

w1 = w1 + �� (TD-error) � e1

w2 = w2 + �� (TD-error) � e2

The learning rate for TD(0) is �xed to 0:2, and all the other parameters are the same
as the SGA method.

4.3 Results

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

F
ee

db
ac

k
ga

in

Learning steps

optimum

beta = 0.9

Figure 3: The average performance of the
proposed method over 100 trials.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

F
ee

db
ac

k
ga

in

Learning steps

gamma=0.9, Critic’s Grid=3

gamma=0.9, Critic’s Grid=10

optimum

Figure 4: The average performance of the
actor/critic algorithm over 100 trials. The
critic uses 3 or 10 boxes.

-2
-1.5

-1
-0.5

0
0.5

1
1.5 2

0

0.5

1

-350

-300

-250

-200

-150

-100

-50

0

Feedback gain

Deviation

Optimum point

Figure 5: Value function over the param-
eter space in the LQR problem, where

 = 0:9. It is fairly
at around the op-
timum: � = �0:5884, � = 0.

Figure 3 shows the performance of the SGA algorithm in the LQR problem. The
variable of the feedback gain has a tendency to drift around the optimum. The parame-
ter of � decreased, but in most case, the growing stopped around 0:2. This result is not
so pessimistic. Figure 5 shows the value function which are de�ned by Equation 7 and
8 over the parameter space (� and �). The value of performance is fairly
at around
the optimal solution. For this reason, we can conclude that the proposed method would
obtain a good policy for the LQR without estimating value function.

Figure 4 shows the performance of the actor/critic algorithms. The actor/critic
algorithm using 3 boxes converged not close to the optimum feedback gain. The reason
for this is that the critic's ability of the function approximation (3 boxes) is insuÆcient
for learning policy, whereas the policy representation is the same.

5 Applying to a Cart-Pole Problem

The behavior of this algorithm is demonstrated through a computer simulation of a
cart-pole control task, that is a multi-dimensional nonlinear nonquadratic problem.
We modi�ed the cart-pole problem described in [2] so that the action is taken to be
continuous.

j j

�

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

x
x = 0

-
F -

Figure 6: The cart-pole problem.

The dynamics of the cart-pole system is modeled by

�� =
g sin � + cos �

�
�F�m`��2 sin �+�csgn(_x)

M+m

�
� �p _�

m`

`
�
4
3 � m cos2 �

M+m

� ,

�x =
F +m`

�
_�2 sin � � �� cos �

�
� �csgn(_x)

M +m
,

whereM = 1:0(kg) denotes mass of the cart, m = 0:1(kg) is mass of the pole, 2` = 1(m)
is a length of the pole, g = 9:8(m=sec2) is the acceleration of gravity, F (N) denotes
the force applied to cart's center of mass, �c = 0:0005 is a coeÆcient of friction of cart,
�p = 0:000002 is a coeÆcient of friction of pole. In this simulation, we use discrete-time
system to approximate these equations, where �t = 0:02sec. At each discrete time
step, the agent observes (x; _x; �; _�), and controls the force F . The agent can execute
action in arbitrary range, but the possible action in the cart-pole system is constrained
to lie in the range [�20; 20](N). When the agent chooses an action which is not lie in
that range, the action executed in the system is truncated. The system begins with
(x; _x; �; _�) = (0; 0; 0; 0). The system fails and receives a reward (penalty) signal of �1
when the pole falls over �12 degrees or the cart runs over the bounds of its track
(�2:4 � x � 2:4), then the cart-pole system is reset to the initial state.

In this experiment, the state space is normalized as (x; _x; �; _�) = (�2:4 m;�2 m/sec;
��� 12=180 rad;�1:5 rad/sec) into (�0:5;�0:5;�0:5;�0:5). The agent's policy func-
tion has �ve internal variables w1 � � �w5, and computes the � and � according to

� = w1
xt
2:4

+ w2
_xt
2
+ w3

�t
12�=180

+ w4

_�t
1:5

,

� = 0:1 +
1

1 + exp(�w5)
: (13)

The eligibilities e1 � � � e5 are given by

e1 = (at � �)xt , e2 = (at � �) _xt

e3 = (at � �) �t , e4 = (at � �) _�t

e5 = ((at � �)2 � �2)(1 + 0:1� �) .

The critic discretizes the normalized state space evenly into 3 � 3 � 3 � 3 = 81 boxes,
and attempts to store in each box V̂ by using TD(0) algorithm [13]. Parameters are
set to
 = 0:95, � = 0:01, and learning rate for TD(0) in the actor/critic is 0:5.

Figure 7 shows the performance of two learning algorithms in which the policy
representation is the same. The proposed algorithm achieved best results. In contrast,
the actor/critic algorithm couldn't learn the control policy because of the poor ability
of function approximation in the critic.

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300 350 400 450 500

T
im

e
st

ep
s

un
til

 fa
ilu

re

Trials

Actor/Critic

SGA

Figure 7: The average performance of the algorithms on 100 trials. The critic uses
3� 3 � 3 � 3 boxes. A trial means an attempt from initial state to a failure.

6 Conclusion

This paper has considered a reinforcement learning where the set of possible action is
continuous and reward is considerably delayed. We have proposed an policy improve-
ment method that is based on a stochastic gradient ascent with respect to the policy

parameter space; it does not require a model of the environment to be given or learned,
it does not need to approximate the value function explicitly, and it is incremental,
requiring only a constant amount of computation per step. To our knowledge, this is
the �rst study of the stochastic gradient method on discounted reward applying to RL
tasks which have continuous action space. We have demonstrated the performance in
comparison with an actor/critic algorithm. The proposed method enables to learn an
acceptable policy with less cost rather than increasing the critic's ability of function
approximation in our test cases.

References

[1] Baird, L. C.: Reinforcement Learning in Continuous Time: Advantage Updating, Proceedings of

IEEE International Conference on Neural Networks, Vol. IV, pp. 2448-2453 (1994).

[2] Barto, A. G., Sutton, R. S. and Anderson, C. W.: Neuronlike Adaptive Elements That Can Solve
DiÆcult Learning Control Problems,

[3] Bradtke, S. J.: Reinforcement Learning Applied to Linear Quadratic Regulation, Advances in

Neural Information Processing Systems 5 , (1992).

[4] Clouse, J. A. & Utogo�, P. E.: A Teaching Method for Reinforcement Learning, Proc. of the 9th

International Conference on Machine Learning , pp. 93-101 (1992).

[5] Crites, R. H. and Barto, A. G.: An Actor/Critic Algorithm that is Equivalent to Q-Learning,
Advances in Neural Information Processing Systems 7 , pp. 401-408 (1994).

[6] Doya, K. : EÆcient Nonlinear Control with Actor-Tutor Architecture, Advances in Neural Infor-

mation Processing Systems 9 , pp. 1012{1018 (1996).

[7] Kimura, H., Yamamura,M., & Kobayashi, S.: Reinforcement Learning by Stochastic Hill Climbing
on Discounted Reward, Proceedings of the 12th International Conference on Machine Learning ,
pp.295-303 (1995).

[8] Kimura, H. & Yamamura, M. & Kobayashi, S.: Reinforcement Learning in Partially Observ-
able Markov Decision Processes: A Stochastic Gradient Method, Journal of Japanese Society for

Arti�cial Intelligence, Vol.11, No.5, pp.761-768 (1996 in Japanese).

[9] Kimura, H., Miyazaki, K. and Kobayashi, S.: Reinforcement Learning in POMDPs with Function
Approximation, Proceedings of the 14th International Conference on Machine Learning , pp. 152{
160 (1997).

[10] Lin, C. J. and Lin, C. T.: Reinforcement Learning for An ART-Based Fuzzy Adaptive Learning
Control Network, IEEE Transactions on Neural Networks, Vol.7, No. 3, pp. 709-731 (1996).

[11] Littman, M. L.: Markov games as a framework for multi-agent reinforcement learning, Proc. of
11th International Conference on Machine Learning , pp. 157-163 (1994).

[12] Singh, S. P., Jaakkola, T. and Jordan, M. I.: Learning Without State-Estimation in Partially
Observable Markovian Decision Processes, Proceedings of the 11th International Conference on

Machine Learning , pp. 284-292 (1994).

[13] Sutton, R. S.: Learning to Predict by the Methods of Temporal Di�erences, Machine Learning

3 , pp. 9-44 (1988).

[14] Watkins, C. J. C. H., & Dayan, P.: Technical Note: Q-Learning, Machine Learning 8 , pp. 55-68
(1992).

[15] Williams, R. J.: Simple Statistical Gradient Following Algorithms for Connectionist Reinforce-

ment Learning, Machine Learning 8 , pp. 229-256 (1992).

