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A b s t r a c t  

In this paper, we investigate a reinforcement 
learning of walking behavior for a four-legged 
robot. The robot has two servo motors per 
leg, so this problem has eight-dimensional 
continuous state/act ion space. We present 
an action selection scheme for actor-critic al- 
gorithms, in which the actor selects a con- 
tinuous action from its bounded action space 
by using the normal distribution. The exper- 
imental results show the robot successfully 
learns to walk in practical learning steps. 

1. I n t r o d u c t i o n  

Reinforcement learning (RL) is a promising method 
for robots to obtain and improve control rules from in- 
teraction with their environment. The most standard 
approach of RL is the value-function approach, that  
is, estimating state-action value function and there- 
after determining an optimal policy from it. Learn- 
ing control in real world applications requires dealing 
with both continuous state and/or  continuous action 
spaces. There are many works about the generaliza- 
tion techniques to approximate value functions over 
continuous state space; CMAC (Sutton ~ Barto 1998) 
is one of linear architectures (Bertsekas & Tsitsiklis 
1996) and the others are neural-networks, instance- 
based methods (Santamaria et al. 1998), etc. How- 
ever, the value function approach is infeasible in high- 
dimensional state-action space, because it needs enor- 
mous trials and memory-resources to find optimal de- 
terministic policies. 

Actor-critic algorithms are an alternative approach 
based on policy gradient methods, in which a parame- 
terized stochastic policy is updated according to the 
gradient of the value function with respect to the 
policy parameters. Although this approach can find 
only a locally optimal policy, it has several practi- 
cal features for solving RL problems which have high- 
dimensional state-action space. In this paper, we in- 
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Figure 1. The robot. Each leg is controlled by two servo 
motors that react to angular-position commands. 

vestigate an actor-critic algorithm and apply it to a 

four-legged robot. The robot has two servo motors per 
leg, so this problem has eight-dimensional continuous 
state/act ion space. We present a new action selection 
scheme for actor-critic algorithms, in which the actor 
selects a continuous action from its bounded action 
space by using the normal distribution. The exper- 
imental results show the robot successfully learns to 
walk in practical learning steps. 

2. P r o b l e m  F o r m u l a t i o n  

2.1 F o u r  Legged Robot 

We consider a real four legged locomotion task shown 
in Figure 1. The objective of learning is to find con- 
trol rules to move forward, but the controller does not 
know the dynamics ahead of time. The control rules 
are specified by a policy function, that  is, a mapping 
from state to a probability distribution over actions. 
The controller improves its behavior through a process 
of trial and error. As shown in Figure 1, each leg is 
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controlled by two servo motors that react to angular- 
position commands. Therefore, the robot has 8 degree 
of freedom. 

At each time step, the learning controller observes cur- 
rent angular-position of 8 motors as the current state, 
and selects action according to its policy. The action 
is also the angular-position of 8 motors. Accordingly, 
the current state is equal to the previous action. At 
an interval of 0.5 sec, an immediate reward is given 
to the learner as a result of the action, and the time 
step proceeds to the next step. Two wheels shown in 
the right-hand side of Figure 1 detect a movement of 
the body, and generate the reward signal; the average 
of the moved distance of the wheels is the moved dis- 
tance of the robot, and the differential of the wheels 
indicates the amount of turning the head. Since we 
want the robot to go straight, the immediate reward 
is defined as the average of the wheels minus absolute 
value of the differential of the wheels. The wheels have 
a diameter of 5cm, and turning full circle generates 200 
pulses. 

2.2 M a r k o v  Dec i s ion  P r o b l e m  

We modeled the robot's learning task as a reinforce- 
ment learning task in a Markov decision process shown 
in the following. Let S denote state space, ~4 be ac- 
tion space, 7~ be a set of real number. At each discrete 
time t, the agent observes state st E $, selects action 
at E .A, and then receives an instantaneous reward 
rt E Tt resulting from state transition in the environ- 
ment. In general, the reward and the next state may 
be random, but their probability distributions are as- 
sumed to depend only on st and at in Markov decision 
processes (MDPs), in which many reinforcement learn- 
ing algorithms are studied. In MDPs, the next state 
st+l is chosen according to the transition probability 
T(st,  a, st+l), and the reward rt is given randomly ac- 
cording to the expectation r(st, a). 

The learning agent does not know T(st ,a ,  st+l) and 
r(st,a) ahead of time. The objective of RL is to 
construct a policy that maximizes the agent's perfor- 
mance. A natural performance measure for infinite 
horizon tasks is the cumulative discounted reward: 

oo 

- E (1) 
k=O 

where the discount factor, 0 _ 7 ~_ 1 specifies the 
importance of future rewards, and Vt is the value at 
time t. In MDPs, the value can be defined as: 

where E{.} denotes the expectation. The objective 
in MDPs is to find an optimal policy that maximizes 
the value of each state s defined by Equation 2. In this 
robot task, the state space is continuous, bounded and 
eight dimensional, and the action space is the same. 
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3. R e i n f o r c e m e n t  L e a r n i n g  A l g o r i t h m s  

3.1 A c t o r - C r i t i c  M e t h o d s  
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Figure 2. A standard actor-critic architecture. The critic 
estimates state values and provides the TD-error to the ac- 
tor. The actor updates the policy using it. If the TD-error 
> 0, the actor raises probability of action at because the 
action at would lead the agent to a better state. Otherwise, 
it decreases the probability of at. 

Actor-critic architecture (see Figure 2) is one of 
promising methods to solve reinforcement learning 
problems not only in MDPs, but also some POMDPs. 
The actor implements a stochastic policy that maps 
from state to a probability distribution over actions. 
The critic at tempts to estimate the evaluation func- 
tion for the current policy. The actor improves its 
control policy using critic's temporal difference (TD) 
as an effective reinforcement. In many cases, the policy 
improvement is executed concurrently with the policy 
evaluation, because it is not feasible to wait for the 
policy evaluation to converge. 

Figure 3 specifies an actor-critic algorithm we used. 
It is noteworthy that both the actor and the critic 
adopt eligibility traces; obviously TD(A) in the critic 
refers to use it, and the actor uses eligibility traces on 
policy parameters (Baird ~ Moore, 1999; Kimura 
Kobayashi, 1998). 

3.1.1 LEARNING RULES IN THE CRITIC 

The calculation scheme of the TD(A) in the critic is 
described in Step 3 and 5 in Figure 3. The parameter 
Av specifies the eligibility trace of the T D ( A -  Av). 

3.1.2 LEARNING RULES IN THE ACTOR 

In the actor, the policy is parameterized by parameters 
and updated according to the gradient of value func- 
tion with respect to the policy parameters (Kimura 
and Kobayashi, 1998; Sutton, McAllester, Singh 
Mansour,2000). Let 7r(alO , s) denote probability of se- 
lecting action a under the policy 7r in the state s. The 
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1. Observe state st,  choose action at with prob- 
ability 7r(at 10, s t) ,  and perform it. 

2. Observe immediate  reward rt, resulting state 
s t+l ,  and calculate the TD-error  according to 

(TD-error) - rt + 7 V (s t+l)  - V ( s t )  , (3) 

where 0 _< 7 _< 1 is the discount factor, V(s) 
is an est imated value function by the critic. 

3. Update  the est imating value function V(s) in 
the critic according to the TD(A) method as: 

^ 

¢.(t)  = 

w ( t )  + w ( t ) ,  

Aw(t)  - (TD-error)~-7(t) , 

w e-- w + a v A w ( t ) ,  

(4) 

where ev denotes the eligibility of the param- 
eter w in the function approximator  V(s), 
is its trace, and c~ is a learning rate. 

4. Update  the actor 's stochastic policy by 

O ln(rr(atlO, s t ) ) ,  = 

°-e-g(t) +-- e,~(t) +-gT(t)  , 

A0(t) - (TD-error)~7(t)  , 

0 +-- O + a ~ A O ( t )  , 

(5) 

where e~ is the eligibility of the policy pa- 
rameter  0, ~ is its trace, and a~ is a learning 
rate. 

5. Discount the eligibility traces as follows: 

~-j(t + 1) +-- 7 Av ~-j(t) , 

~ 7 ( t + l )  +- 7 A ~ V ( t ) ,  

where A~ and A~ (0 <_ A~,A~ _< 1) are dis- 
count factors in the critic and the actor re- 
spectively. 

6. Let t +-- t + 1, and go to step 1. 

Figure 3. An actor-critic algorithm using eligibility traces 
in both the actor and the critic. The critic is assumed to 
be a linear architecture. 
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1r(a]O, s) is taken to be a probability density function 
when the set of possible action is continuous. The 
agent improves the policy 7r by modifying the param- 
eter 0. 

The actor's learning rule is shown in the step 4 and 
5 in Figure 3. The parameter  A~ specifies the actor's 
eligibility trace, but its features are somewhat different 
from TD()~)'s. When A~ is close to 0, the policy would 
be updated according to the gradient of the est imated 
value function V, and when )~ is close to 1, the policy 
would be updated by the gradient of the actual return, 
defined by Equation 1. 

3.2  I m p l e m e n t a t i o n  for  t h e  R o b o t  

The vector (sl, s 2 , . . . ,  s8) represents the angular po- 
sitions of 8 motors as the state input, which are nor- 
malized as - 1  < si < 1, where i -  1 , 2 , . . . , 8 .  In the 

m 

critic, the continuous state-space is discretized into 2 s 
hyper square cells, and the state is encoded by a unit 
basis vector (xl,  x2 , . - . ,  x256) of length - 2 s, in which 
one component corresponding the current state is 1, 
and the others are 0. The est imated value r~(st) using 
in Figure 3 is given by 

256 

- (6) 
i = 1  

where wi is a parameter  for the value function 
approximation.  Let ev( t ) i  be the eligibility for 
the i th parapeter  w/ in Equation 4, i.e., e~(t) = 
(ev ( t ) l ,  ev(t)2,  . . . ev ( t ) i  . . . , ev(t)256),  then from Equa- 
tion 6, it is given by 

1 , w h e r e x i - 1 ,  
e v ( t ) i -  0 , where x i -  0 .  (7) 

Let a vector (a (1) ,a (2) , " - ,a (8) )  be the angular posi- 
tions of 8 motors as an action output ,  which are also 
normalized as - 1  _< a(i) _< 1, where i - 1 , 2 , . . . , 8 .  
The actor uses the following action-selection scheme; 
for each motor  (i), the actor draws random samples 
from the normal distribution N(#(i),  cr~i)) until a sam- 

ple which satisfies [ -1 ,  1] is generated, and takes the 
last one as the a(i). The parameters  #(i) and ~r(i) are 
given by the sigmoid function" 

2 
#(i) = - 1 , 

1 + exp ( -  }--]~=: sk 0k,(i)) 

1 

er(i) = 1 + e x p  ( - 0 9 , ( i ) )  ' 

where Ok,(i) (k -- 1, 2 , . . . 9 )  denotes policy parameters.  
Let Pi~ be probabili ty of generating a sample within 
[-1,1] from the distribution N(#(i) ,  er~i)) as 

1 ( ( x _ , ( , ) ) 2 )  
Pin - exp - (8) 1 a(i) x / ~  2(r~i) dx 
3



Then, the policy function is given by 

;r(a(i) [0, st ) 
= (1 + (i - Pin)+ ( 1 -  Pin) 2 +. . . )  

1 ( ( a ( i ) - # ( i ) )  2)  
× ~ exp - 

= 1 1 ( ( a ( i ) - p ( i ) )  2 )  , (9) 
Pin ( 7 ( i ) ~  exp - 2 c r ~ i )  

where a(i) is bounded by [-1, 1]. Let e~(t)k,(i) be the 
eligibility for the k th policy parapeter 0k,(i) associated 
with the i th motor, i.e., 0 and e=(t) shown in in Equa- 
tion 5 represent a 9 x 8 matrix: 

01,(1) 02,(1) " '"  09,(1 ) 
01,(2) 02,(2) " '"  09,(2 ) 

• 

01,(8) 02,(8) " '"  0 9 , ( 8  ) 

- . . . .  : 

• • 
e~r (t) 1,(8) e~r ( t ) 2 , ( 8 ) - . .  e~r (t)9,(8) 

From Equation 5 and 9, each e~(t)k,(i) is given by 

0 
- ~ In 7r(a(i)lO, st) e,~(t)k,(i) OOk,(i) 

( 1 (a(i)-p(i))  2 ) 
_ _ O#(i) 0_~ In pi,~(r(i)vr~-- ~ exp _2cr~i ) OOk,(i) O#(i) 

= si(1--#(i))(1+#(i))2 (a(i)--#(i)~2 4- Pin 0 ~~nl ~ 
(4) Op(i) 

where k -  1, 2 , . . .8 .  The eligibility for k -  9 is 

0 In rr(a(i) 10, st) 

0(r(i) 0 l n (  1 (a(i)-p(i))  2) 
= C30k,(i) Oct(i) pincr(i)x/_~__ ~ exp _2cr~i ) 

= cr(i)(1 - ~r(i)) 
( (a(i) - It(i)) 2 - cr2 0 1 )  

(i) + Pi,~ (11) 
x cr 3 O c t ( i )  P i , ~  ' (~) 

where k -  9. The second term of Equation 10 and 11 
involve differentiating a definite integral with respect 
to #(4) or cr(i). We give it by an approximated numeri- 
cal calculation, but the computational cost can be eas- 
ily reduced by using a table, because the function is 
only depend on it(i) and cr(i) which are bounded. 

Here we must draw attention to the fact that the eligi- 
bility is to divergent when or(i) goes close to 0, because 
~(i) is occupying the denominators of Equation 10 and 
41
11. The divergence of the eligibility leads the algo- 
rithm to learning failure. For this reason, we adopt a 
heuristics that controls the step size of the update pa- 
rameters so that it is proportional to ~r~i ). Then, the 
eligibilities are given by 

e~(t)k,(~) 
= s i  (1 - #(i))(1 + #(i))/2 (a(i) - ,(i)) 

si (1 - p(i))(1 + p(i)) ~i) Pi.  O#(i) Pin ~) 
+ 2 

where k - 1 ,2 , - . .8 ,  

= ( 1 -  or(i)) ( ( a ( i ) -  #(i)) 2 -  ~r~i)) 

( 0 1 )  (13) 
+(1 - cr(i))a~i) Pin Oa(i) Pi. ' 

where k - 9. 

4. R e s u l t s  

We applied the algorithm to the robot on two con- 
ditions; one is on a carpet, the other is on a high- 
frictional rubber mat. Throughout the experiments, 
we use the following parameters: 7 = 0.9, av = 0.1, 
a v = 0.002, Av = 1.0, A v = 1.0. 
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Figure 4. Learning curves averaged over 2 trials on the car- 
pet and the high-frictional rubber mat. Each run consisted 
of 10000 steps (about 80 minutes). 

Figure 4 shows learning curves for the robot on the car- 
pet and the rubber mat. The vertical axis shows the 
accumulated reward translated into moved distance 
to the front, but the reward signal is given accord- 
ing to (average of the two wheel's moved distance to 
the front) - (absolute value of the differential of the 
wheels). Therefore, the falling curves do not (always) 
mean that the robot is moving backward in the early 
stage of the learning in Figure 4. On both conditions, 
the robot typically found good behavior in fewer than 
6000 steps (about 50 minutes), and the actual veloc- 
ity of the learned robot is about 5cm/sec after 10000 
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Figure 5. Gait pattern of the learned behavior on the car- 
pet after 10000 steps (about 80 minutes). The top graph 
shows the movement for lifting legs, and the bottom graph 
is the movement for swinging legs. This gait seems a trot. 

steps. The difference of the performance between the 
carpet and the rubber mat  arise from the difference of 
the area. Since the rubber mat  has small area, more 
loss of reward was enforced to keep moving on the mat.  

In both case, the robot learned to behave like a turtle 
as shown in Figure 6, and Figure 5 is its gait pattern.  
The right-hand foreleg and the left hind-leg move in 
the same phase, and the left foreleg and the right hind- 
leg also move in the same phase. This gait seems a 
trot. 

However, the behavior is slightly different between the 
carpet and the rubber mat.  On the carpet, the robot 
tends to drag the body, because the body easily slips 
on it. It rather learns to weight down the support- 
ing leg which contributes most to moving forward. On 
the other hand, on the high-frictional rubber mat,  the 
robot keeps the body away from the ground. These ob- 
servations support that  the robot found good behavior 

adaptively for each condition. 
41
Figure 6. Learned behavior on the carpet after 10000 steps 

(about 80 minutes). 
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5. D i scuss ion  

Although there are several works making use of the 
normal distribution in the actor (e.g., Williams 1992, 
Doya 1997, Kimura ~ Kobayashi 1998, etc.), the naive 
implementation easily causes learning failure in our 
domain. The main reason is that the naive implemen- 
tation in the actor does not use the information o f  
boundaries of the action space. In the naive method, 
when the actor selects an action which is out of the 
boundaries, then the robot pretends to perform it, but 
the actually executed action is on the boundary. If the 
mean value of the distribution is moved to out of the 
boundaries, the robot can hardly move randomly, and 
learning would be failed. The proposed method avoids 
it by simply rejecting such actions. In compensation 
for avoiding failure, the additional computational cost 
is needed to calculate the eligibilities. 

The coarse state-space quantization used in the critic 
is one of simple and promising methods to cope with 
high-dimensional state space, but it has two undesir- 
able effects; one is that it makes the environment non- 
Markovian, the other is difficulties of finding good poli- 
cies from such coarse value functions. The experimen- 
tal results support that the actor's eligibility makes the 
robot less sensitive to these effects. Konda and Tsitsik- 
lis (2000) proposed the other approach that the critic 
should use the actor's eligibility as the feature vector 
in order to approximate value (or q) functions. Their 
approach is mathematically sound and also promising 
in high-dimensional problems. 

The following three subjects restricted flexibility of 
policy representation; one is the relatively small num- 
ber of policy parameters, the use of the sigmoid func- 
tion, and the other is the use of the normal distribution 
for the policy. These were given by experts as knowl- 
edge of the domain, and contributed reducing search 
space for learning within the practical steps. Thanks 
to the policy gradient theorem (Sutton et al. 2000), 
the actor can adopt any non-linear distribution func- 
tions as its policy under the assumption that the policy 
is differentiable with respect to its parameters. This 
flexibility of the policy function is useful for incorpo- 
rating the expert's knowledge into the policy. Also 
supervised learning techniques would be available be- 
cause the knowledge is provided by input-output map- 
ping in many cases. 

In our sense, the robot learned somewhat undesirable 
behavior such as dragging the body in the experi- 
ment. If the reward setting reflects conditions such as 
whether the body touches the floor or not, or costs of 
moving legs, then the learner will find better behavior 
in the context of the robotics. 
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