
Reinforcement Learning of Walking Behavior
for a Four-Legged Robot

H a j i m e K i m u r a GEN~FE.DIS.TITECH.AC.JP
T o r u Y a m a s h i t a YAMA~FE.DIS .TITECH.AC .JP

S h i g e n o b u K o b a y a s h i KOBAYASI~DIS .TITECH.AC .JP
Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 JAPAN

TuM01-3
A b s t r a c t

In this paper, we investigate a reinforcement
learning of walking behavior for a four-legged
robot. The robot has two servo motors per
leg, so this problem has eight-dimensional
continuous state/act ion space. We present
an action selection scheme for actor-critic al-
gorithms, in which the actor selects a con-
tinuous action from its bounded action space
by using the normal distribution. The exper-
imental results show the robot successfully
learns to walk in practical learning steps.

1. I n t r o d u c t i o n

Reinforcement learning (RL) is a promising method
for robots to obtain and improve control rules from in-
teraction with their environment. The most standard
approach of RL is the value-function approach, that
is, estimating state-action value function and there-
after determining an optimal policy from it. Learn-
ing control in real world applications requires dealing
with both continuous state and/or continuous action
spaces. There are many works about the generaliza-
tion techniques to approximate value functions over
continuous state space; CMAC (Sutton ~ Barto 1998)
is one of linear architectures (Bertsekas & Tsitsiklis
1996) and the others are neural-networks, instance-
based methods (Santamaria et al. 1998), etc. How-
ever, the value function approach is infeasible in high-
dimensional state-action space, because it needs enor-
mous trials and memory-resources to find optimal de-
terministic policies.

Actor-critic algorithms are an alternative approach
based on policy gradient methods, in which a parame-
terized stochastic policy is updated according to the
gradient of the value function with respect to the
policy parameters. Although this approach can find
only a locally optimal policy, it has several practi-
cal features for solving RL problems which have high-
dimensional state-action space. In this paper, we in-
41
D

Figure 1. The robot. Each leg is controlled by two servo
motors that react to angular-position commands.

vestigate an actor-critic algorithm and apply it to a

four-legged robot. The robot has two servo motors per
leg, so this problem has eight-dimensional continuous
state/act ion space. We present a new action selection
scheme for actor-critic algorithms, in which the actor
selects a continuous action from its bounded action
space by using the normal distribution. The exper-
imental results show the robot successfully learns to
walk in practical learning steps.

2. P r o b l e m F o r m u l a t i o n

2.1 F o u r Legged Robot

We consider a real four legged locomotion task shown
in Figure 1. The objective of learning is to find con-
trol rules to move forward, but the controller does not
know the dynamics ahead of time. The control rules
are specified by a policy function, that is, a mapping
from state to a probability distribution over actions.
The controller improves its behavior through a process
of trial and error. As shown in Figure 1, each leg is
1

controlled by two servo motors that react to angular-
position commands. Therefore, the robot has 8 degree
of freedom.

At each time step, the learning controller observes cur-
rent angular-position of 8 motors as the current state,
and selects action according to its policy. The action
is also the angular-position of 8 motors. Accordingly,
the current state is equal to the previous action. At
an interval of 0.5 sec, an immediate reward is given
to the learner as a result of the action, and the time
step proceeds to the next step. Two wheels shown in
the right-hand side of Figure 1 detect a movement of
the body, and generate the reward signal; the average
of the moved distance of the wheels is the moved dis-
tance of the robot, and the differential of the wheels
indicates the amount of turning the head. Since we
want the robot to go straight, the immediate reward
is defined as the average of the wheels minus absolute
value of the differential of the wheels. The wheels have
a diameter of 5cm, and turning full circle generates 200
pulses.

2.2 M a r k o v Dec i s ion P r o b l e m

We modeled the robot's learning task as a reinforce-
ment learning task in a Markov decision process shown
in the following. Let S denote state space, ~4 be ac-
tion space, 7~ be a set of real number. At each discrete
time t, the agent observes state st E $, selects action
at E .A, and then receives an instantaneous reward
rt E Tt resulting from state transition in the environ-
ment. In general, the reward and the next state may
be random, but their probability distributions are as-
sumed to depend only on st and at in Markov decision
processes (MDPs), in which many reinforcement learn-
ing algorithms are studied. In MDPs, the next state
st+l is chosen according to the transition probability
T(st, a, st+l), and the reward rt is given randomly ac-
cording to the expectation r(st, a).

The learning agent does not know T(st ,a , st+l) and
r(st,a) ahead of time. The objective of RL is to
construct a policy that maximizes the agent's perfor-
mance. A natural performance measure for infinite
horizon tasks is the cumulative discounted reward:

oo

- E (1)
k=O

where the discount factor, 0 _ 7 ~_ 1 specifies the
importance of future rewards, and Vt is the value at
time t. In MDPs, the value can be defined as:

where E{.} denotes the expectation. The objective
in MDPs is to find an optimal policy that maximizes
the value of each state s defined by Equation 2. In this
robot task, the state space is continuous, bounded and
eight dimensional, and the action space is the same.
41
3. R e i n f o r c e m e n t L e a r n i n g A l g o r i t h m s

3.1 A c t o r - C r i t i c M e t h o d s

" [,

Agent

Actor at

stochastic policy 7r

. _~reinforcement for at

', rt + 7 V (s t + l) - ~Z(st) ;, WD-error

I
Critic l)(s) i ~ - rt

Observation Reward Action
v

Environment

Figure 2. A standard actor-critic architecture. The critic
estimates state values and provides the TD-error to the ac-
tor. The actor updates the policy using it. If the TD-error
> 0, the actor raises probability of action at because the
action at would lead the agent to a better state. Otherwise,
it decreases the probability of at.

Actor-critic architecture (see Figure 2) is one of
promising methods to solve reinforcement learning
problems not only in MDPs, but also some POMDPs.
The actor implements a stochastic policy that maps
from state to a probability distribution over actions.
The critic at tempts to estimate the evaluation func-
tion for the current policy. The actor improves its
control policy using critic's temporal difference (TD)
as an effective reinforcement. In many cases, the policy
improvement is executed concurrently with the policy
evaluation, because it is not feasible to wait for the
policy evaluation to converge.

Figure 3 specifies an actor-critic algorithm we used.
It is noteworthy that both the actor and the critic
adopt eligibility traces; obviously TD(A) in the critic
refers to use it, and the actor uses eligibility traces on
policy parameters (Baird ~ Moore, 1999; Kimura
Kobayashi, 1998).

3.1.1 LEARNING RULES IN THE CRITIC

The calculation scheme of the TD(A) in the critic is
described in Step 3 and 5 in Figure 3. The parameter
Av specifies the eligibility trace of the T D (A - Av).

3.1.2 LEARNING RULES IN THE ACTOR

In the actor, the policy is parameterized by parameters
and updated according to the gradient of value func-
tion with respect to the policy parameters (Kimura
and Kobayashi, 1998; Sutton, McAllester, Singh
Mansour,2000). Let 7r(alO , s) denote probability of se-
lecting action a under the policy 7r in the state s. The
2

1. Observe state st, choose action at with prob-
ability 7r(at 10, s t) , and perform it.

2. Observe immediate reward rt, resulting state
s t+l , and calculate the TD-error according to

(TD-error) - rt + 7 V (s t+l) - V (s t) , (3)

where 0 _< 7 _< 1 is the discount factor, V(s)
is an est imated value function by the critic.

3. Update the est imating value function V(s) in
the critic according to the TD(A) method as:

^

¢.(t) =

w (t) + w (t) ,

Aw(t) - (TD-error)~-7(t) ,

w e-- w + a v A w (t) ,

(4)

where ev denotes the eligibility of the param-
eter w in the function approximator V(s),
is its trace, and c~ is a learning rate.

4. Update the actor 's stochastic policy by

O ln(rr(atlO, s t)) , =

°-e-g(t) +-- e,~(t) +-gT(t) ,

A0(t) - (TD-error)~7(t) ,

0 +-- O + a ~ A O (t) ,

(5)

where e~ is the eligibility of the policy pa-
rameter 0, ~ is its trace, and a~ is a learning
rate.

5. Discount the eligibility traces as follows:

~-j(t + 1) +-- 7 Av ~-j(t) ,

~ 7 (t + l) +- 7 A ~ V (t) ,

where A~ and A~ (0 <_ A~,A~ _< 1) are dis-
count factors in the critic and the actor re-
spectively.

6. Let t +-- t + 1, and go to step 1.

Figure 3. An actor-critic algorithm using eligibility traces
in both the actor and the critic. The critic is assumed to
be a linear architecture.
41
1r(a]O, s) is taken to be a probability density function
when the set of possible action is continuous. The
agent improves the policy 7r by modifying the param-
eter 0.

The actor's learning rule is shown in the step 4 and
5 in Figure 3. The parameter A~ specifies the actor's
eligibility trace, but its features are somewhat different
from TD()~)'s. When A~ is close to 0, the policy would
be updated according to the gradient of the est imated
value function V, and when)~ is close to 1, the policy
would be updated by the gradient of the actual return,
defined by Equation 1.

3.2 I m p l e m e n t a t i o n for t h e R o b o t

The vector (sl, s 2 , . . . , s8) represents the angular po-
sitions of 8 motors as the state input, which are nor-
malized as - 1 < si < 1, where i - 1 , 2 , . . . , 8 . In the

m

critic, the continuous state-space is discretized into 2 s
hyper square cells, and the state is encoded by a unit
basis vector (xl, x2 , . - . , x256) of length - 2 s, in which
one component corresponding the current state is 1,
and the others are 0. The est imated value r~(st) using
in Figure 3 is given by

256

- (6)
i = 1

where wi is a parameter for the value function
approximation. Let ev(t) i be the eligibility for
the i th parapeter w/ in Equation 4, i.e., e~(t) =
(ev (t) l , ev(t)2, . . . ev (t) i . . . , ev(t)256), then from Equa-
tion 6, it is given by

1 , w h e r e x i - 1 ,
e v (t) i - 0 , where x i - 0 . (7)

Let a vector (a (1) ,a (2) , " - ,a (8)) be the angular posi-
tions of 8 motors as an action output , which are also
normalized as - 1 _< a(i) _< 1, where i - 1 , 2 , . . . , 8 .
The actor uses the following action-selection scheme;
for each motor (i), the actor draws random samples
from the normal distribution N(#(i), cr~i)) until a sam-

ple which satisfies [-1 , 1] is generated, and takes the
last one as the a(i). The parameters #(i) and ~r(i) are
given by the sigmoid function"

2
#(i) = - 1 ,

1 + exp (- }--]~=: sk 0k,(i))

1

er(i) = 1 + e x p (- 0 9 , (i)) '

where Ok,(i) (k -- 1, 2 , . . . 9) denotes policy parameters.
Let Pi~ be probabili ty of generating a sample within
[-1,1] from the distribution N(#(i) , er~i)) as

1 ((x _ , (,)) 2)
Pin - exp - (8) 1 a(i) x / ~ 2(r~i) dx
3

Then, the policy function is given by

;r(a(i) [0, st)
= (1 + (i - Pin)+ (1 - Pin) 2 +. . .)

1 ((a (i) - # (i)) 2)
× ~ exp -

= 1 1 ((a (i) - p (i)) 2) , (9)
Pin (7 (i) ~ exp - 2 c r ~ i)

where a(i) is bounded by [-1, 1]. Let e~(t)k,(i) be the
eligibility for the k th policy parapeter 0k,(i) associated
with the i th motor, i.e., 0 and e=(t) shown in in Equa-
tion 5 represent a 9 x 8 matrix:

01,(1) 02,(1) " '" 09,(1)
01,(2) 02,(2) " '" 09,(2)

•

01,(8) 02,(8) " '" 0 9 , (8)

- :

• •
e~r (t) 1,(8) e~r (t) 2 , (8) - . . e~r (t)9,(8)

From Equation 5 and 9, each e~(t)k,(i) is given by

0
- ~ In 7r(a(i)lO, st) e,~(t)k,(i) OOk,(i)

(1 (a(i)-p(i)) 2)
_ _ O#(i) 0_~ In pi,~(r(i)vr~-- ~ exp _2cr~i) OOk,(i) O#(i)

= si(1--#(i))(1+#(i))2 (a(i)--#(i)~2 4- Pin 0 ~~nl ~
(4) Op(i)

where k - 1, 2 , . . .8 . The eligibility for k - 9 is

0 In rr(a(i) 10, st)

0(r(i) 0 l n (1 (a(i)-p(i)) 2)
= C30k,(i) Oct(i) pincr(i)x/_~__ ~ exp _2cr~i)

= cr(i)(1 - ~r(i))
((a(i) - It(i)) 2 - cr2 0 1)

(i) + Pi,~ (11)
x cr 3 O c t (i) P i , ~ ' (~)

where k - 9. The second term of Equation 10 and 11
involve differentiating a definite integral with respect
to #(4) or cr(i). We give it by an approximated numeri-
cal calculation, but the computational cost can be eas-
ily reduced by using a table, because the function is
only depend on it(i) and cr(i) which are bounded.

Here we must draw attention to the fact that the eligi-
bility is to divergent when or(i) goes close to 0, because
~(i) is occupying the denominators of Equation 10 and
41
11. The divergence of the eligibility leads the algo-
rithm to learning failure. For this reason, we adopt a
heuristics that controls the step size of the update pa-
rameters so that it is proportional to ~r~i). Then, the
eligibilities are given by

e~(t)k,(~)
= s i (1 - #(i))(1 + #(i))/2 (a(i) - ,(i))

si (1 - p(i))(1 + p(i)) ~i) Pi. O#(i) Pin ~)
+ 2

where k - 1 ,2 , - . .8 ,

= (1 - or(i)) ((a (i) - #(i)) 2 - ~r~i))

(0 1) (13)
+(1 - cr(i))a~i) Pin Oa(i) Pi. '

where k - 9.

4. R e s u l t s

We applied the algorithm to the robot on two con-
ditions; one is on a carpet, the other is on a high-
frictional rubber mat. Throughout the experiments,
we use the following parameters: 7 = 0.9, av = 0.1,
a v = 0.002, Av = 1.0, A v = 1.0.

o
~ .5

~ 40
~ .,5

-20

- ~

\
\

, i

' I' ' ; +~

~s'oo

' on carpet~ t I~ |
on rubber mat .~--x--[_ it

I

0 2500 5000 10000
leaming step

Figure 4. Learning curves averaged over 2 trials on the car-
pet and the high-frictional rubber mat. Each run consisted
of 10000 steps (about 80 minutes).

Figure 4 shows learning curves for the robot on the car-
pet and the rubber mat. The vertical axis shows the
accumulated reward translated into moved distance
to the front, but the reward signal is given accord-
ing to (average of the two wheel's moved distance to
the front) - (absolute value of the differential of the
wheels). Therefore, the falling curves do not (always)
mean that the robot is moving backward in the early
stage of the learning in Figure 4. On both conditions,
the robot typically found good behavior in fewer than
6000 steps (about 50 minutes), and the actual veloc-
ity of the learned robot is about 5cm/sec after 10000
4

-64

-128

....................... { A A ' ' leg 1
.1~ - :'-. / \ "~ .4 ~, leg 2 ---,..

", " ".. / \ i ". ..,," ~ / . \ leg 3 ,,,,o~';,
- ./. - ,,

- : " \ ~ Y - i -

i i

0 2 4 6 8

@

learning step
1 0

o

- 6 4

/
i i i I

0 2 4 6 8 10

learning step

Figure 5. Gait pattern of the learned behavior on the car-
pet after 10000 steps (about 80 minutes). The top graph
shows the movement for lifting legs, and the bottom graph
is the movement for swinging legs. This gait seems a trot.

steps. The difference of the performance between the
carpet and the rubber mat arise from the difference of
the area. Since the rubber mat has small area, more
loss of reward was enforced to keep moving on the mat.

In both case, the robot learned to behave like a turtle
as shown in Figure 6, and Figure 5 is its gait pattern.
The right-hand foreleg and the left hind-leg move in
the same phase, and the left foreleg and the right hind-
leg also move in the same phase. This gait seems a
trot.

However, the behavior is slightly different between the
carpet and the rubber mat. On the carpet, the robot
tends to drag the body, because the body easily slips
on it. It rather learns to weight down the support-
ing leg which contributes most to moving forward. On
the other hand, on the high-frictional rubber mat, the
robot keeps the body away from the ground. These ob-
servations support that the robot found good behavior

adaptively for each condition.
41
Figure 6. Learned behavior on the carpet after 10000 steps

(about 80 minutes).
5

5. D i scuss ion

Although there are several works making use of the
normal distribution in the actor (e.g., Williams 1992,
Doya 1997, Kimura ~ Kobayashi 1998, etc.), the naive
implementation easily causes learning failure in our
domain. The main reason is that the naive implemen-
tation in the actor does not use the information o f
boundaries of the action space. In the naive method,
when the actor selects an action which is out of the
boundaries, then the robot pretends to perform it, but
the actually executed action is on the boundary. If the
mean value of the distribution is moved to out of the
boundaries, the robot can hardly move randomly, and
learning would be failed. The proposed method avoids
it by simply rejecting such actions. In compensation
for avoiding failure, the additional computational cost
is needed to calculate the eligibilities.

The coarse state-space quantization used in the critic
is one of simple and promising methods to cope with
high-dimensional state space, but it has two undesir-
able effects; one is that it makes the environment non-
Markovian, the other is difficulties of finding good poli-
cies from such coarse value functions. The experimen-
tal results support that the actor's eligibility makes the
robot less sensitive to these effects. Konda and Tsitsik-
lis (2000) proposed the other approach that the critic
should use the actor's eligibility as the feature vector
in order to approximate value (or q) functions. Their
approach is mathematically sound and also promising
in high-dimensional problems.

The following three subjects restricted flexibility of
policy representation; one is the relatively small num-
ber of policy parameters, the use of the sigmoid func-
tion, and the other is the use of the normal distribution
for the policy. These were given by experts as knowl-
edge of the domain, and contributed reducing search
space for learning within the practical steps. Thanks
to the policy gradient theorem (Sutton et al. 2000),
the actor can adopt any non-linear distribution func-
tions as its policy under the assumption that the policy
is differentiable with respect to its parameters. This
flexibility of the policy function is useful for incorpo-
rating the expert's knowledge into the policy. Also
supervised learning techniques would be available be-
cause the knowledge is provided by input-output map-
ping in many cases.

In our sense, the robot learned somewhat undesirable
behavior such as dragging the body in the experi-
ment. If the reward setting reflects conditions such as
whether the body touches the floor or not, or costs of
moving legs, then the learner will find better behavior
in the context of the robotics.
41
References

Bertsekas, D.P. ~ Tsitsiklis, J.N. (1996). Neuro-
Dynamic Programming, Athena Scientific.

Doya, K. (1997). Efficient Nonlinear Control with
Actor-Tutor Architecture, Advances in Neural In-
formation Processing Systems 9, pp. 1012-1018.

Kimura, H. ~ Kobayashi, S. (1998). An Analysis
of Actor/Critic Algorithms using Eligibility Traces:
Reinforcement Learning with Imperfect Value Func-
tion, 15th International Conference on Machine
Learning, pp.278-286.

Konda, V.R. ~ Tsitsiklis, J.N. (2000). Actor-Critic
Algorithms, Advances in Neural Information Pro-
cessing Systems 12, pp. 1008-1014.

Santamaria, J.C., Sutton, R.S. & Ram, A. (1998). Ex-
periments with Reinforcement Learning in Problems
with Continuous State and Action Spaces, Adaptive
Behavior 6 (2), pp. 163-218.

Singh, S.P. ~ Sutton, R.S. (1996). Reinforcement
Learning with Replacing Eligibility Traces, Machine
Learning 22, pp.123-158.

Sutton, R.S. ~ Barto, A. (1998). Reinforcement
Learning: An Introduction, A Bradford Book, The
MIT Press.

Sutton, R.S., McAllester, D., Singh, S. ~z Mansour,
Y. (2000). Policy Gradient Methods for Reinforce-
ment Learning with Function Approximation, Ad-
vances in Neural Information Processing Systems 12
(NIPS12), pp. 1057-1063.

Williams, R. J. (1992). Simple Statistical Gradient
Following Algorithms for Connectionist Reinforce-
ment Learning, Machine Learning 8, pp. 229-256.
6

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header1:
	footer:
	a:
	TUM01-3B:
	pdf:

